期刊文献+

随机海浪中船舶安全概率的数值模拟 被引量:4

Numerical Simulation of Ship's Safe Probability in Stochastic Waves
下载PDF
导出
摘要 近年来国外发展起来的安全盆思想为衡准船舶动稳性特性开辟了一条新的途径,本文将安全盆的思想进行了延续和拓展。首先简要的介绍了求解微分方程的数值方法———谐加速度方法的基本思想与计算步骤,然后以一条渔船为例,引进ISSC双参数海浪谱,在构建船舶横摇运动微分方程时考虑了船速和遭遇浪向角的影响,应用谐加速度方法对船舶在随机海浪下的非线性横摇运动方程进行了数值求解,结合数理统计的知识,得到了随机海浪中4参数的船舶安全概率,分析了波高、波浪特征周期、遭遇浪向角、船速以及海浪随机相位角等因素对船舶安全概率的影响。 The safe basin theory developed abroad recently provides a new approach to predict the probability of ship's dynamic stability. The theory is extended and developed in this paper. The basic idea about harmonic acceleration method, which can be used to solve differential equations, is introduced briefly with the calculation steps. A fisher with 30.7m long and 6.9m wide is taken as an example. The ISSC wave spectrum is used for the description of the excitation. The velocity and heading angle of ship are considered in the nonlinear rollmotion differential equation. The nonlinear dynamic response of ship is simulated by the harmonic acceleration method. The safe probability p. (H, T,X,U) is obtained from a four parameterized function combining the statistic knowledge. Several factors including the wave height, the wave period, the heading angle, the velocity of ship and random phase angle of waves are taken into account in analyzing their influences on ship's safe probability.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2005年第6期6-11,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 安全概率 数值模拟 非线性横摇运动 谐加速度方法 安全盆 safe probability numerical simulation nonlinear roll motion harmonic acceleration method safe basin
  • 相关文献

参考文献9

  • 1[1]KREUZER E,WENDT M.Ship capsizing analysis using advanced hydrodynamic modeling[J].Philosophical Transaction Royal Society of London,2000,358:1835-1851.
  • 2[2]THOMPSON J M T.Transient basins:a new tool for desighing ships against capsize[C].Proceedings,IUTAM Symposium on the Dynamics of Marine Vehicles and Structures in Waves,London,1990:325-331.
  • 3[3]THOMPSON J M T,RAINEY R C T,SOLIMAN M S.Mechanics of Ship Capsize under Direct and Parametric Wave Excitation[J].Philosophical Transaction of the Royal Society of London,1992,Series A-428:1-13.
  • 4[4]FALZARANO J M,SHAW S W,TROESCH A W.Application of global methods for analyzing dynamical systems to ship rolling and capsizing[J].International Journal of Bifurcation and Chaos,1992,2:101-116.
  • 5[5]SENJANOVIC I,LOZINA Z.Application of the harmonic acceleration method for nonlinear dynamic analysis[J].Computers and Structures,1993,47(6):927-937.
  • 6[6]SENJANOVIC I,CIPRIC G,PARUNOV J.Nonlinear ship rolling and capsizing in rough sea[J].Brodogradnja,1996,44(1):19-24.
  • 7[7]SENJANOVIC I,FAN Y.Numerical simulation of a ship capsizing in iIrregular wWaves[J].Chaos,Solitons,Fractals,1995,5(5):727-737.
  • 8沈栋,黄祥鹿.随机波浪作用下的船舶倾覆[J].船舶力学,1999,3(5):7-14. 被引量:16
  • 9唐友刚,谷家扬,郑宏宇,李红霞.用Melnikov方法研究船舶在随机横浪中的倾覆[J].船舶力学,2004,8(5):27-34. 被引量:11

二级参考文献7

  • 1[1]Falzarano M, Shaw S W,Troesch A W.Application of global methods for analyzing dynamic systems to ship rolling motion and capsizing[J]. Int. J of bifur. and chaos,1992,2:101-115.
  • 2[2]Hsieh Shang-rou, Troesch A W, Shaw S W. A nonlinear probabilistic method for predicting vessel capsizing in random beam seas[A].Proc. R.Soc[C],Lond.,1994,A446:195-211.
  • 3[3]Jiang Changben, Troesch A W, Shaw S W. Highly nonlinear rolling motion of biased ships in random beam seas[J].Journal of Ship Research, 1991,40(2): 125-135.
  • 4[4]Bikdash M, Balacpandran B, Nayfeh A. Melnikov analysis for a ship with a general roll-damping model[J]. Nonlinear dynamics, 1994,6:101-124.
  • 5[7]李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版社,1989.
  • 6沈栋,黄祥鹿.随机波浪作用下的船舶倾覆[J].船舶力学,1999,3(5):7-14. 被引量:16
  • 7袁远,余音,金咸定.船舶在规则横浪中的奇异倾覆[J].上海交通大学学报,2003,37(7):995-998. 被引量:18

共引文献24

同被引文献33

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部