期刊文献+

采用滑模方法实现多涡卷混沌系统的追踪控制

Tracking control of multi-scroll chaotic system using the sliding mode method
下载PDF
导出
摘要 针对基于滞回非线性多涡卷混沌系统的追踪控制问题,提出了一种滑模变结构控制方法,实现了受控混沌系统对任意参考信号的追踪控制.所提出的控制方案,保证追踪误差系统的状态首先在有限时间内到达滑模面,然后渐进收敛到原点,实现了追踪控制.理论分析和仿真实例证明了所提出方法的有效性. A tracking control method is presented basing on the Multi - scroll chaotic systems with hysteresis nonlinear. And it is realized that the controlled chaotic system can track the any known smooth signal. Under the presented scheme, the states of the tracking error system will firstly arrive at the sliding mode and then asymptotically reach the origin, that is to say, realize the tracking control. The theoretical analysis and simulations proved the effectiveness of the method.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2005年第6期732-736,742,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(60474016) 教育部归国人员科研启动基金资助项目
关键词 混沌系统 滑模控制 追踪控制 滞回函数 chaotic system sliding mode control tracking control hysteresis function
  • 相关文献

参考文献9

  • 1OTY E, GREBOGI C, YORKE J A. Controlling chaos [ J ]. Phys Rev Lett, 1990,64 ( 11 ) : 1196 - 1199.
  • 2刘向东,黄文虎.混沌系统延迟反馈控制的理论与实验研究[J].力学进展,2001,31(1):18-32. 被引量:34
  • 3PYRAGAS K. Continuous control of chaos by self-controlling feedback [ J ]. Physics Letters A, 1992,170:421 -428.
  • 4CHEN G R, DONG X. On feedback control of chaotic nonlinear dynamical systems [ J ]. Int J of Bifurcation and Chaos, 1992, 2 (2) : 407 -411.
  • 5谭文,王耀南,刘祖润,周少武.不确定混沌系统的模糊自适应控制[J].控制与决策,2003,18(4):471-474. 被引量:10
  • 6JIANG X Y, WANG Z Y. Controlling chaos by RBF neural network based on GA optimization [ C ]. Intelligent Control and Automation, WCICA 2004,2 : 1267 - 1271.
  • 7陈士华,谢进,陆君安,刘杰.Rssler混沌系统的追踪控制与同步[J].物理学报,2002,51(4):749-752. 被引量:53
  • 8HAN F L, YU X H, WANG Y Y, et al. N - scroll chaotic oscillators by second - order systems and double - hysteresis blocks[ J ]. Electronics Letters ,2003,39 (23) : 1636 - 1638.
  • 9TANG Y. Terminal Sliding Mode Control for Rigid Robots[ J ]. Automatica,1998,34( 1 ) :51 -56.

二级参考文献25

  • 1Chen G. Controlling Chaos and Bifurcation in Engineering Systems[M]. Boca Raton:CRC Press,1999.
  • 2Ott E, Grebogi C, Yorke J A. Controlling chaos[J].Phys Rev Lett A,1990,64(11):1196-1199.
  • 3Chen G, Dong X. On feedback control of chaotic continuous-time systems [J]. IEEE Trans Circ Syst , 1993,40(9):591-601.
  • 4Gonzalc G A. Controlling chaos of an uncertain Lozi system via adaptive techniques[J]. Int J Bifurc Chaos,1995,5 (2) : 559-562.
  • 5Liang Chen, Guanrong Chen, Yangwoo Lee. Fuzzy modeling and adaptive control of uncertain chaotic system[J]. Infor Sci,1999,121(1):27-37.
  • 6Jang J S R. Adaptive network based fuzzy inference system[J]. IEEE Trans Syst Man Cybern, 1993, 23(3) : 665-685.
  • 7Goldberg R R. Methods of Real Analysis[M]. New York : Wiley, 1976.
  • 8Cowan C F N, Grant P M. Adaptive Filters[M].Englewood Cliffs : Prentice-Hall, 1985.
  • 9Tang W,Firstinternational Conference Integration Dynamics Monitoring Control,1999年,319页
  • 10Liu X D,Fourth Asia-Pacific Conference on Computational Mechanics,1999年,157页

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部