期刊文献+

基于信息熵的燃气输配管网系统可靠性分析 被引量:3

ENTROPY-BASED RELIABILITY ANALYSIS OF PIPELINE SYSTEM FOR GAS TRANSMISSION AND DISTRIBUTION
下载PDF
导出
摘要 环状燃气管网具有多条流通路径,路径流量分配的不确定性与可靠性密切相关,而信息熵作为量度不确定性的手段,可间接定量地反映系统的可靠性。为此,基于信息熵理论及最大熵原理提出了路径熵的概念,并以此来定量量度燃气管网中气体从气源至节点流动过程中对路径选择的不确定性。此外,通过定义路径流量比来构建路径熵的概率空间,从而建立了路径熵的计算模型,并提出利用序贯方法、采用分层排序的思想求解模型。最后求解了一个算例中燃气管网的各节点路径熵。结果表明,路径熵间接反映了管网系统的流动阻力特性;路径熵值越大的节点水力性能越好,其上游任一流通路径发生事故时该节点流量损失期望值越小,可靠性越大。 The pipeline system for gas transmission and distribution is the major urban infrastructure. It is very important to guarantee the operation reliability of the system. There are many flow paths in a ring gas pipeline. The uncertainty of flow distribution in the paths is closely correlative with the reliability. The information entropy as the tool to measure the uncertainty may reflect the reliability of the system indirectly and quantitatively. Based on the information entropy theory and maximum entropy principle, the concept of path entropy is proposed. The path entropy is used to quantitatively measure the uncertainty of flow distribution in the paths from the gas source to the nodes. By defining the path flow ratio to establish the probabilistic space of the path entropy, the calculating model of path entropy is developed. And the sequential method and the separate-layer ranking thought are used to solve the model. At last, with the model, the path entropies of the various nodes for a real pipeline system are calculated. The results show the path entropy reflects the features of the flow resistance for the pipeline system indirectly: the bigger the path entropy is, the better the hydraulic capability of the node is; the less the expectation of flow loss of the node is when an accident happens at its any upstream path, the more the reliability is.
机构地区 哈尔滨工业大学
出处 《天然气工业》 EI CAS CSCD 北大核心 2006年第1期126-128,137,共4页 Natural Gas Industry
基金 哈尔滨工业大学校基金资助项目(编号:HIT.2001 54)研究成果。
关键词 燃气 气体输送 管网 信息熵 路径熵 可靠性 gas, gas transmission, pipeline system, information entropy, path entropy, reliability
  • 相关文献

参考文献4

  • 1TANYIMBOH T T, et al. A quantified assessment of the relationship between the reliability and entropy of water distribution systems [J]. Engineering Optimization, 2000, 22(2): 179-199.
  • 2SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27 (3) :379-428.
  • 3JAYNES E T. Information theory and statistical mechanic[D]. Physical Review, 1957, 106(4): 620-630.
  • 4Y B Wu, H Tian. Entropy-based water distribution network rehabilitation[C]. Conference on Computing and Control for the Water Industry. 2003.

同被引文献23

  • 1张鹏,吴燕,胡秀庄,孙鸿玲.具有中介状态和失效相关时表决工程系统的可靠性分析[J].四川大学学报(工程科学版),2006,38(3):152-158. 被引量:6
  • 2高小旺.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,(1):13-22.
  • 3[4]WANG Guang-an,WANG Wen-quan.Fuzzy reliability analysis of aseismic structures[C].Proc of international symposium on Fuzzy mathematics in earthquake researches.Beijing:Seismological Press,1985.
  • 4[5]WANG Guang-yuan,WANG Wen-quan,OU Jin-ping.Generalized reliability of engineering structures[C].Proceeding of second international fuzzy systems association congress,Tokyo:1987.
  • 5[6]ZHANG Peng,LU Da-gang,WANG Guang-yuan.Reliability analysis of voting engineering systems with intermediate state before failure[J].International Journal of Advances in Systems Science and Applications,2000,1(2):97-103.
  • 6[13]陈志华.建筑钢结构设计[M].天津:天津大学出版社,2005.
  • 7Awumah K, Gouher I, Bhatt S K. Assessment of reliability in water distribution networks using entropy based measures[J]. Stochastic Hydrology & Hydraulics, 1990, 4(4):309-320.
  • 8T. T. TANYIMBOH, A. B. TEMPLEMAN. Optimum design of flexible water distribution networks[J]. Civil Engineering & Environmental Systems, 1993, 10(3):245-258.
  • 9Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3):379-423.
  • 10Jaynes E T. Information Theory and Statistical Mechanics[J]. Physical Review, 1957, 106(4):620-630.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部