摘要
将行波变换下修正的双Jacob i椭圆函数展开法推广到范围非常广泛的一般函数变换下进行,利用这一方法求得了K le in-Gordon方程的更多新的周期解,补充了前面研究的结果.当模m→1或m→0时,这些解退化为相应的孤波解、三角函数解和奇异的行波解.
A modified double Jacobian elliptic function expansion method under a general function transform, which is more general than the Jacobian elliptic function expansion method under a traveling wave transform, is proposed to construct the exact periodic solutions of nonlinear evolution equation. It is shown that some new exact periodic solutions of nonlinear Klein - Gordon equation are obtained by using this method and the known results of the Klein-Gordon equation are replenished. When the modulus m→1 or m →0 , these solutions degenerate into homologous separate wave solution, trigonometric function solution and strange traveling wave solution.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2006年第1期20-23,共4页
Journal of Anhui University(Natural Science Edition)
基金
安徽省科技厅年度重点基金资助项目(01041188)
安徽省省级重点课程"普通物理"建设基金资助项目
关键词
JACOBI椭圆函数展开法
非线性发展方程
函数变换
周期解
Jacohian elliptic function expansion method
nonlinear evolution equation
function transform
periodic solution