摘要
UC轧机中间辊弯辊控制回路的数学模型具有很强的时变性和不确定性,为实现其精确控制,设计了一种基于遗传算法的模糊控制器并将其应用于该控制回路中。系统利用遗传算法来优化模糊控制器的隶属函数及量化因子和比例因子的初值,并且根据模糊控制查询表的输出来在线调整量化因子和比例因子。仿真结果表明,用该方法设计的模糊控制器具有一定的自适应能力,将该控制器应用于UC轧机中间辊弯辊控制回路可以使二次型板形缺陷得到快速有效的控制,具有良好的控制性能。
A fuzzy logic controller (FLC) based on genetic algorithm is devised and applied to realize the precise control of the bending intermediate roll system of the UC rolling mill whose mathematical model has strong time-variant property and uncertainty. GA is employed to optimize the membership fimctions of the FLC and the initial values of the quantifying factors and the scaling factor. And the quantifying factors and the scaling factor are adjusted on-line based on the output of the fuzzy control query sheet. The simulation resuhs show that the FLC devised in this technique has self-adaptive capability. The quadratic component of the flatness defect can be rapidly and efficiently controlled when applying this controller to the bending intermediate roll system of the UC rolling mill and the FLC optimized by GA has goed control performance.
出处
《控制工程》
CSCD
2006年第1期18-21,共4页
Control Engineering of China
基金
国家自然科学基金
宝钢集团公司联合资助项目(50274003)
关键词
遗传算法
模糊控制器
量化因子
比例因子
板形控制
genetic algorithm
fuzzy logic controller
quantifying factor
scaling factor
flatness control