期刊文献+

一种改进的二维虚拟ESPRIT算法—虚拟波达方向矩阵法 被引量:2

An Improved 2-D Virtual ESPRIT Algorithm of Virtual DOA Matrix Method
下载PDF
导出
摘要 二维虚拟ESPRIT算法对子阵列内部结构要求低,但在低信噪比环境下,其估计误差较大。提出一种改进的二维虚拟ESPRIT算法,该算法具有二维虚拟ESPRIT算法的优点,但在低信噪比条件下他的估计误差更小,算法运算量更低。计算机仿真实验表明了改进的二维虚拟ESPRIT算法的有效性。 2- D virtual ESPRIT algorithm has a low requirement for inner structures of subarrays. But in low SNR situations,its estimating error will be reduced. This paper presents an improved method whose estimating errors are lower than that of the original method in low SNR environments,and it also can decrease the computation cost. Its effectivity can be proved by the computer emulating results.
作者 陈金平 薛倩
出处 《现代电子技术》 2006年第3期10-12,共3页 Modern Electronics Technique
关键词 波达方向 虚拟阵列 二维ESPRIT算法 信噪比 direction of arrival virtual array 2 - D ESPRIT algorithm SNR
  • 相关文献

参考文献4

二级参考文献6

  • 1殷勤业.高分辨率波达方向估计.西安交通大学博士论文[M].,1989..
  • 2殷勤业,1989年
  • 3殷勤业,1990年
  • 4殷勤业,1989年
  • 5殷勤业,博士学位论文,1989年
  • 6Shan T,IEEE Trans ASSP,1985年,33卷,4期,806页

共引文献153

同被引文献18

  • 1刁鸣,缪善林,张一飞.基于特殊阵列的相干信源二维测向新方法[J].系统工程与电子技术,2007,29(3):338-340. 被引量:3
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on AP, 1986, 34(3) :276 - 280.
  • 3Bohme J F. Estimation of source parameters by maximum likelihood and nonlinear regression[C]//ICASSP, 1984 : 731 - 734.
  • 4Golub G, Pereyra V. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate[J]. SIAM J. Number Anal. , 1973,10:413-432.
  • 5Jaffer A G. Maximam likelihood direction finding of stochastic sources..a separable solution[C]fflCASSP, 1988, 5:2893- 2896.
  • 6Shan T J, Wax M Kailath. On spatial smoothing for estimation of coherent signals[J]. IEEE Trans. on ASSP, 1985,33 (4) : 806 -811.
  • 7Palanisamy P, Kalvanasundaram N, Raghunandan A. A New DOA Estimation Algorittun for Wideband Signals in the Presence of Unknown Spatially Correlated Noise [ J ]. Signal Processing, 2009, 89(10) : 1921 - 1931.
  • 8LIU Jian, HUANG Zhi - tao, ZHOU Yi- gu. Extended 2q - Music Algorithm tor Noncircular Signals [ J ]. Singal Proeessing, 2008,88(6) : 1327 - 1339.
  • 9Jeremy A B, C, eorey R L. A Digital Beamformer for High Frequency Annular Arrays [ J ]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2005, 52 ( 8 ) : 1262 - 1269.
  • 10Delmas J P, Aberda H. Cramer- Rao Bounds of DOA Estimates for BPSK and QPSK Modulated Signals [ J ]. IEEE Transactions on Signal Processing, 2006, 54(1): 117- 126.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部