期刊文献+

基于MATLAB神经网络的切削力预测 被引量:12

Prediction of Turning Force with Artificial Neural Network Based on MATLAB
下载PDF
导出
摘要 借助MATLAB人工神经网络,对切削力预测进行了研究。通过比较快速BP算法和LM算法在网络训练时的收敛速度,确定了网络的结构和工具函数,并分析了影响切削力预测精度的因素,实现了切削力的精确预测。其研究结果为车削零件加工质量的物理仿真以及加工参数的优化选择提供了依据。 Turning force prediction was studied with the help of artificial neural network based on MATLAB. The structure of network and toolbox functions were determined by comparing convergence speed between rapid BP algorithm and LM algorithm, the factors of cutting force prediction error were analyzed and turning forces were predicted accurately. The work can be applied to physical simulation of machining quality and optimization of cutting parameters in turning.
出处 《机床与液压》 北大核心 2006年第1期4-5,14,共3页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(50175081)
关键词 切削力 预测 MATLAB 人工神经网络 Turning force prediction MATLAB Artificial neural network
  • 相关文献

参考文献3

二级参考文献23

  • 1[1]L. Fausett. Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs, Nj, 1994.
  • 2[2]K. Oskada, G. Yang. Application of neural network to an expert system for cold gording [ J ], International Journal of Machine Tools and Manufacuring, 1991, 31(4): 577-587.
  • 3[3]K. Oskada, G. B. Yang. Neural network for process planning of cold forging [ J ]. Annals of the CIRP 1990, 40(1): 480-489.
  • 4[4]Bhattaeharyya. Metal Cutting: Theory and Practice[ M]. Calutta: New Central Book Agency (p) Ltd., 1996.
  • 5[5]K. Hans Raj,Rahul Swarup Sharma, Sanjay Srivaetava, et.al. Mocdeling of manufacturing processes with ANNs for intelligent manufacturing [ J ]. International Journal of Machine Tools& Manufacturing, 2000, 40: 851-868.
  • 6Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 7Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 8Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 9Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 10Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.

共引文献171

同被引文献61

引证文献12

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部