期刊文献+

一维多介质可压缩Euler方程的高精度RKDG有限元方法 被引量:4

A High-order Accurate RKDG Finite Element Method for One-dimensional Compressible Multicomponent Euler Equation
下载PDF
导出
摘要 采用RKDG有限元方法、Level Set方法和改进的带“Isentropic”修正的Ghost Fluid方法模拟了一维多介质可压缩Euler方程,其中Euler方程、Level Set方程和重新初始化方程都采用了三阶精度的RKDG有限元方法进行离散,并对一维两种介质可压缩流体进行了数值实验,得到了较高分辨率的计算结果. The RKDG finite element method, Level Set method and modified Ghost Fluid method with Isentropic fix are used to simulate a one-dimensional compressible multicomponent Euler equation. A third-order accurate RKDG finite element method is used to solve the Euler equation, the Level Set equation and the re-initiation equation. Numerical tests on one-dimensional compressible two-fluid flows are made and satisfactory results are obtained.
出处 《计算物理》 CSCD 北大核心 2006年第1期43-49,共7页 Chinese Journal of Computational Physics
基金 863高技术惯性约束聚变主题项目 国家自然科学基金(10471011)资助项目
关键词 RKDG有限元方法 LEVEL SET方法 GHOST Huid方法 “Isentropic”修正 RKDG finite element method Level Set method Ghost Fluid method Isentropic fix
  • 相关文献

参考文献2

二级参考文献5

  • 1Jin S,Commun Pure Appl Math,1999年,52卷,1587页
  • 2Cockburn B,SIAM J Numer Anal,1998年,35卷,2440页
  • 3Cockburn B,Math Comput,1989年,52卷,411页
  • 4Shu C W,J Comput Phys,1988年,77卷,439页
  • 5唐维军,张景琳,李晓林,赵宁.三维流体界面不稳定性的Ghost方法[J].计算物理,2001,18(2):163-169. 被引量:8

共引文献5

同被引文献41

  • 1陈荣三,蔚喜军.二维多介质可压缩流的RKDG有限元方法[J].计算物理,2006,23(6):699-705. 被引量:2
  • 2Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computational Physics, 1999,152:457-492.
  • 3Liu T G, Khoo b C, Yeo K S. Ghost fluid method for strong shock-impacting on material interface[J]. Journal of Computational Physics, 2003,190 :651-681.
  • 4水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1981:36-41.
  • 5Toro E F. Direct Riemann solver for the time-dependent Euler equations[J]. Shock Waves, 1995,5:75-80.
  • 6Fedkiw R P, Aslam T, Xu S. The ghost fluid method for deflagration and detonation discontinuities[J]. Journal of Computational Physics, 1999,154: 393-427.
  • 7Fedkiw R P, Marquina A, Merriman B. An isobaric fix for the overheating problem in multimaterial compressible flows[J]. Journal of Computational Physics, 1999,148(2):545-578.
  • 8Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅲ: One dimensional systems[J]. Journal of Computational Physics, 1989,84:90-113.
  • 9Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scienfic Laboratory Report LA-UR, 1973,73-479.
  • 10LeSaint P, Raviart P A. On a finite element methods for solving the neutron transport equation[A]. de Boor C, Ed. Mathematical Aspects of Finite Elements in Partial Differential Equations [ C ]. New York:Academic Press, 1974,89-145.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部