摘要
采用改进的Numerov格式,对连续态波函数及其归一化问题作了细致的计算.指出了Cowan在ε→0时状态波函数的归一化中存在的问题,给出了更加准确、有效的归一化计算方法.为了检验这一算法,计算了氢原子各状态(l=0.3)下的Thomas-Reiche—Kuhn(TRK)和.利用最小二乘法,给出了TRK求和中无穷项的渐近函数形式,并由此采用积分方法得到了余项的近似计算结果.
With an improved Numerov algorithm, continuum state wave functions and its normalization are investigated. Cowan' s normalization is discussed and a more precise and effective calculation is offered. We calculate the Thomas-Reiche-Kuhn(TRK) sum of several hydrogen atomic states ( l = 0 - 3 ). The least-squared method is used to generate infinite asymptotical forms of TRK. The residues are approximately calculated with an integral processing.
出处
《计算物理》
EI
CSCD
北大核心
2006年第1期115-119,共5页
Chinese Journal of Computational Physics
基金
国家自然科学基金(10074014)资助项目
关键词
连续态
归一化
TRK和定则
积分处理
continuum state
normalization
TRK sum rules
integral processing