期刊文献+

基于不能直接判定区间灰数大小的灰矩阵博弈的纯策略解及其风险 被引量:4

Pure Strategy Solution and Venture Problem of Grey Matrix Game Based on Undeterminable Directly Interval Grey Number
下载PDF
导出
摘要 运用灰色系统思想和系统工程的理论,揭示了人们在灰信息条件下的博弈心理与博弈决策规则;提出了区间灰数的优势、均势和劣势的概念;证明了与某一区间灰数相对的另一区间的各种灰数势之和为1,且灰数势大小关系的集合是一个全序集。在此基础上,定义了灰数势意义下的纯策略解,且证明了这一纯策略解(或称灰势鞍点)存在的充要条件。最后,以煤价在一定范围内波动情况下的某单位冬季取暖用煤贮量的决策为例,对其灰数势意义下的纯策略解及其风险问题进行了研究。 The game psychology and decision-making rule of the players under the condition of grey information were revealed by using the grey system ideas and the systems engineering theories. The conceptions of the superiority, inferiority and equipollence position degrees of the interval grey number were defined, and it was proved that the sum of three position degrees for a certain interval grey number related to another grey number is 1, and that the relation set of the position degrees is a whole order set of the interval grey numbers. On this basis a pure strategy solution under the condition of grey number position degree was defined and the necessary and sufficient conditions for the existence of the pure strategy solution, or the grey position saddle point were derived. Taking a coal reservoir problem for a certain unit for the heating in the winter under the condition that there was a fluctuation area of the coal prices as an example, its pure strategy as solution and venture problem were studied.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第1期137-142,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(70473037) 江苏省自然科学基金重点资助项目(BK2003211) 南京航空航天大学特聘教授科研创新基金资助项目(1009-260812)
关键词 数量经济学 区间灰数 大小秩序判定 灰矩阵博弈 灰势 纯策略解 quantitative economics interval grey number determination of big to small order grey matrix game grey position pure strategy solution
  • 相关文献

参考文献10

  • 1方志耕,刘思峰.基于纯策略的灰矩阵二人有限零和博弈模型研究[J].南京航空航天大学学报,2003,35(4):441-445. 被引量:31
  • 2Fang Zhi-geng, Liu Si-feng. Grey Matrix Model Based on Pure Strategy [C] // Proceedings of the 32nd International Conference on Computers & Industrial Engineering. Gemini Inernational Limited Dublin,Ireland, 2003 : 520 - 525.
  • 3方志耕,刘思峰.基于纯策略的灰矩阵博弈模型研究(Ⅰ)——标准灰矩阵博弈模型构建[J].东南大学学报(自然科学版),2003,33(6):796-800. 被引量:20
  • 4方志耕 刘思峰.基于区间数大小可判定的灰矩阵博弈的混合策略解的讨论.中国管理科学,2004,10.
  • 5Daniel Friedman. On Economy Applications of Evolutionary Game Theory [J]. Evolutionary Economics, 1998 ( 8 ) : 15 - 34.
  • 6Dieter Balkenborg, Karl H. Schlag, Evolutionarily Stable Sets[J]. International Journal Game Theory, 2001,29:571 - 595.
  • 7谢识予.有限理性条件下的进化博弈理论[J].上海财经大学学报,2001,3(5):3-9. 被引量:368
  • 8Voorneveld M. Pareto-optimal Security Strategies as Minimax Strategies of a Standard Matrix Game[J].Journal of Optimization Theory and Applications,1999,102(1) : 203 -210.
  • 9Balkenborg Dieter, Schlag Karl H. Evolutionarily Stable Sets[J]. International Journal Game Theory,2001,29:571 - 595.
  • 10Lo Kin Chung. Nash Equilibrium Without Mutual Knowledge Ofrationality[J]. Economic Theory, 1999(14) :621 -633.

二级参考文献14

  • 1[1]Kreps,D. Game Theory and Economic Modeling[M]. Oxford University Press, 1990.
  • 2[2]J. W. Weibull. Evolutionary Game Theory[M]. MIT, 1995.
  • 3[3]K. Arrow, E. Colombatto. M. Perlman and C. Schmidt. The Rational Foundations of Economic Behaviour [M]. Macmillan Press LTD. 1996.
  • 4[4]Hammerstein, P. and R. Selten. ‘Game theory and evolutionary biology' Handbook of Game Theory[J]. vol.2, edited by Aumann, R. J. and S. Hart, Elsevier Science B. V. 929-993. 1994.
  • 5[5]Kandori, M. ‘ Evolutionary game theory in economics' Advances in Economics and Econometrics: Theory and Application[J]. Seventh World Congress Vol. 2, Edited by Kreps, D. and K. Wallis, Cambridge University Press. 243-277. 1997.
  • 6[6]Nash,J. ‘Non-cooperative games', Ph. D. thesis[M]. Mathematics Department, Princeton University, 1950.
  • 7[7]Roy Gardner. Games Business and Economics[M]. John Wiley & Sons, Inc. , 1995.
  • 8Kifer Y. Game options[J]. Finance and Stochastics,2000, (4): 443~463.
  • 9Hwng Y A. Axiomatizations of the core on the universal domain and other natural domains [J ].International Journal of Game Theory, Int J Game Theory, 2001, (29) : 597~623.
  • 10Cho I K, LI Hao. How complex are networks playing repeated games? [J]. Economic Theory, 1999,(13) :93~123.

共引文献398

同被引文献33

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部