摘要
提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地估计出混合像元的组分比。
This paper proposes to estimate abundances from hyperspectral image using probability outputs of support vector machines (SVMs), trains a SVM with a gauss kernel function, and trains the parameters of an additional sigmoid function to map the SVM outputs into probabilities. An experiment of real hyperspectral image is conducted to validate the procedure. The abundances estimated by SVM comparison with those of the linear spectral un- mixing are also given. The experiment results show that the method can provide effective result of abundance estimation for hyperspectral image.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2006年第1期51-54,共4页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金资助项目(40471088)
国家973计划资助项目(2003CB415205)
关键词
支撑向量机
多类
后验概率
像元分解
高光谱
support vector machine(SVM)
multi-class
posterior probability
pixel unmixing
hyperspectral imagery