期刊文献+

基于支撑向量机概率输出的高光谱影像混合像元分解 被引量:15

Unmixing of Hyperspectral Imagery Based on Probabilistic Outputs of Support Vector Machines
下载PDF
导出
摘要 提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地估计出混合像元的组分比。 This paper proposes to estimate abundances from hyperspectral image using probability outputs of support vector machines (SVMs), trains a SVM with a gauss kernel function, and trains the parameters of an additional sigmoid function to map the SVM outputs into probabilities. An experiment of real hyperspectral image is conducted to validate the procedure. The abundances estimated by SVM comparison with those of the linear spectral un- mixing are also given. The experiment results show that the method can provide effective result of abundance estimation for hyperspectral image.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第1期51-54,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40471088) 国家973计划资助项目(2003CB415205)
关键词 支撑向量机 多类 后验概率 像元分解 高光谱 support vector machine(SVM) multi-class posterior probability pixel unmixing hyperspectral imagery
  • 相关文献

参考文献7

  • 1Melgani F, Bruzzone L. Classification of Hyperspectrat Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(8):1 778-1 790.
  • 2Foody G M, Mathur A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,12(6):1 335-1 343.
  • 3Foody G M. Relating the Land Cover Composition of Mixed Pixels of Artificial Neural Network Classification Output [ J ]. Photogrammtry Engineering and Remote Sensing, 1996, 62(5): 491-499.
  • 4Eric D. On the Use of Prior and Posterior Information in the Subpixel Proportion Problem[J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41(11):2 687-2 691.
  • 5Platt J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likehood Methods[OL]. http:/research. miscrosoft, com /~jplatt, 1999.
  • 6Hastie T. Tibshirani R. Classification by Pairwise Coupting[J]. The Annals of Statistics, 1998, 26(1): 451-471.
  • 7Vapnik V. An Overview of Statistical Learning Theory[J].IEEE Transactions on Neural Networks. 1999.10(5) :988-999.

同被引文献215

引证文献15

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部