期刊文献+

一类近切触流形的余维数为2的不变子流形 被引量:1

INVARIANT SUBMANIFOLD OF CODIMENSION 2 OF A CERTAIN CLASS OF ALMOST CONTACT MANIFOLDS
下载PDF
导出
摘要 本文研究了由K.Kenmotsu引进的一类近切触Riemann流形的余维数为2的不变子流形,证明不变子流形也是此类近切触流形. This paper studies invariant submanifold of codimension 2 of Kenmotsu manifold. We obtain the structure tensors induced on the submanifolds of codimension 2. Furthermore we obtain some geometric properties of the invariant submanifold of codimension 2.
作者 曾凤鸣
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1996年第3期48-52,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 不变子流形 近切触流形 黎曼流形 余维数 Kenmotsu manifold, Invarant submanifild, Quasi umbilical submanifold, Minimal submanifold, Totally geodesic submanifold.
  • 相关文献

同被引文献16

  • 1徐旭峰,孙振祖.拟常曲率Riemann流形中具常中曲率的超曲面[J].郑州大学学报(自然科学版),1993,25(2):21-27. 被引量:4
  • 2Bejancu A.CR submanifolds of a Kaehlerian manifolds Ⅰ[J].Proc Am Math,1978,69:135 -142.
  • 3Bejancu A.CR submanifolds of a Kaehlerian manifolds Ⅱ[J].Trans Am Math Soc,1979,250:333-345.
  • 4Bejancu A,Kon M,Yano K.CR submanifolds of a complex space form[J].J Differential Geometry,1981,16:137-145.
  • 5Yano K,Kon M.CR submanifolds of a complex projective space[J].J Differential Geometry,1981,16:431 -444.
  • 6Chen B Y.CR submanifolds of a Kaehler manifold Ⅰ[J].J Differential Geometry,1981,16:305-322.
  • 7Chen B Y.CR submanifolds of a Kaehler manifold Ⅱ[J].J Differential Geometry,1981,16:493-509.
  • 8Bejancu A.Geometry of CR Submanifolds[M].Dorprecht:Reidel Publishing Co,1986.
  • 9Kobayashi M.Contact normal submanifolds and contact generic normal submanifolds in Kenmotsu manifolds[J].Revista Matematica,1991,4:73-95.
  • 10Kobayashi M.Symmetric twofold contact CR submanifolds in manifolds with Sasakian 3-structure[J].Tensor N S,1993,52:165-169.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部