摘要
称码CA+为强码,若对任意x,y,z∈A*,(i)x,yz∈C蕴含yxz∈C+且(i)yxz∈C+与x∈C+蕴含yz∈C*;称码CA+为内缀码,若x∈C且yxz∈C蕴含yz=1.本文证明:CA+为内缀强码的充要条件是对C的字母表ACA有正整数k,使C=AkC.此结论是对C.M.Reis类似结论的补充,亦是H.J.
A code CA + is called strong, if for all x,y,z∈A , (i) x,yz∈C imply yxz∈C + and (ii) yxz, x∈C + imply yz∈C ; A code CA + is called infix, if x,yxz∈C imply yz=1 . It is proved in this paper that CA + is an infix strong code if and only if C=A k C for some positive integer k , where A C is the alphabet of C . This result is a complement of similar results due to C. M. Reis and a generalization of the same result on finite strong code due to H. J. shyr.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1996年第3期53-55,共3页
Journal of Sichuan Normal University(Natural Science)