期刊文献+

复杂策动力项对Duffing方程混沌系统相态的影响 被引量:2

Analysis on the Influence of the Phase-State of Chaotic System in Duffing Equation by Complicated Stimulating Force Item
下载PDF
导出
摘要 对经典Duffing方程在周期激励和限带白噪同时作用下的混沌性质进行分析。首先检测出无噪声时系统的临界状态和周期状态的周期激励的幅值,然后分别固定这两个特殊幅值,改变限带白噪的幅值,利用时间历程曲线辅助分析相态图的变化;再固定限带白噪的幅值,改变周期激励的幅值,借助时间历程曲线分析相态图的变化。结果表明:系统只输入周期激励时,随着周期激励幅值的增大,系统依次呈现同宿状态、混沌状态和周期状态;系统处在临界状态时,输入限带白噪声,随着限带白噪声幅值的增大,相态图的轨线运动范围增大。 The authors analyze the chaotic characters of the Duffing equation coacted on by the periodic stimulating force and band-limited white noise. Firstly, the critical amplitude value and periodic amplitude value of the system free of noise are detected. Secondly, the phase-state graphs are analyzed with the time-course curve by keeping the two particular amplitude values while varying the band-limited noise amplitude values. A thirdly, a similar analysis is done by keeping the amplitude value of bandlimited white noise and varing the amplitude value of the periodic stimulating force. The results show that the system appears chummage state, chaotic state and periodic state in turn as the periodic stimulating force value increasing when the periodic stimulating force is the only input. When the system is in critical state as the band-limited white noise increases the phase-state graph extends its dynamic range.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2005年第6期801-805,共5页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金项目(40374045)
关键词 Dulling方程 复杂策动力 混沌 相态 Duffing equation complicated stimulating force chaos phase-state
  • 相关文献

参考文献9

  • 1李月.[D].长春:吉林大学,2004.
  • 2李月,郭华,唐方江,邓晓英,刘奔.噪声通过混沌振子后统计特性的定性分析[J].吉林大学学报(地球科学版),2002,32(3):287-289. 被引量:5
  • 3李月,杨宝俊.检测强噪声背景下周期信号的混沌系统[J].科学通报,2003,48(1):19-20. 被引量:26
  • 4Wang C W.The lower bounds of T-Periodic solutions for the forced Duffing equation[J].Journal of Mathematical Analysis and Application,2001,260 (2):507-516.
  • 5Tang C L.Solvability of the forced Duffing equation at resonance[J].Journal of Mathematical Analysis and Applications,1998,219(1):110-124.
  • 6Socha L,Proppe C.Control of the duffing oscillator under non-gaussian external excitation[J].European Journal of Mechanics A/Solid,2002,21 (6):1 069-1 082.
  • 7Agiza H N.On the analysis of stability,bifurcation,chaos and chaos control of Kopel map[J].Chaos,Solitons and Fractals,1999,10(11):1 909-1 916.
  • 8Fred P,Namwoon K.Implications of chaos research for new product forecasting[J].Technological Forecasting and Social Change,1996,53(3):239-261.
  • 9Shibata H.Quantitative characterization of spatiotemporal chaos[J].Physica A,1998,252(3-4):428-449.

二级参考文献8

  • 1(美)勒克斯E概率论与数理统计[M].黄志远,冯文权,胡则成译.北京:人民教育出版社,1992.106-112.
  • 2沈凤麟,钱玉美.信号统计分析基础[M].合肥:中国科学技术大学出版社,1997.98-102.
  • 3卡尔逊A B.通信系统-电子通信中信号与噪声引论[M].卞正申,禾世华译.西安:西安交通大学出版社,1999.48-50.
  • 4GARDNER N A. Characterization of cvclostarionary random signal processes[J]. IEEE Transaction on Im formation Theory, 1999,21: 21.
  • 5WIGGNS S. Introduction to applied nonlinear dynami cal systems and chaos[J]. New York: Springer-Ver lag, 1991. 157.
  • 6帕普里斯A概率、随机变量与随机微分方程[M].保铮,章潜五,吕胜尚译.西安:西北电讯工程学院出版社,1995.176-179.
  • 7聂春燕,石要武.基于互相关检测和混沌理论的弱信号检测方法研究[J].仪器仪表学报,2001,22(1):32-35. 被引量:73
  • 8李月,杨宝俊,石要武,于功梅,张忠彬.用混沌振子检测淹没在强背景噪声中的方波信号[J].吉林大学自然科学学报,2001(2):65-68. 被引量:19

共引文献28

同被引文献10

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部