期刊文献+

圆形槽波导到矩形波导结的有限元分析 被引量:1

Analysis of circular groove to rectangular waveguide junction using finite element method
下载PDF
导出
摘要 设计基于圆形槽波导的元件经常会用到圆形槽波导到矩形波导结。应用有限元法(FEM)分析了N端口波导结。采用完全匹配层(PML)将槽波导的开放边界截断为有限区域,然后对圆形槽波导到矩形波导结的散射特性进行了数值计算,得出的散射参量为圆形槽波导振荡器输出结构的优化设计提供了依据。 Circular groove to rectangular waveguide junction is a frequent component for devices design based on circular groove guide. In this paper, N-port waveguide junction was analyzed by the finite element method (FEM). To fulfill the requirement of limited domain which FEM can process, perfectly matched layer (PML) was applied to truncate the open boundary of groove guide. Then, scatter ing parameters of circular groove to rectangular waveguide junction were calculated. The numerical results can be used to design and adjust circular groove guide oscillators.
出处 《电波科学学报》 EI CSCD 北大核心 2005年第6期720-724,共5页 Chinese Journal of Radio Science
关键词 圆形槽波导 矩形波导 波导结 有限元法 散射参量 Key words circular groove guide rectangular waveguide waveguide junction fi-nite element method scattering parameters
  • 相关文献

参考文献9

  • 1Hong-Sheng Yang, Jianglei Ma and Zhong-Zuo Lu.Circular groove guide for short millimeter and submillimeter waves[J]. IEEE Trans. Microwave Theory Tech. ,1995, MTT-43(2) : 324-330.
  • 2Li Zhao and Andreas C Cangellaris. GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids[J]. IEEE Trans. Microwave Theory Tech, 1996, MTT-44(12): 2555-2563.
  • 3J P Berenger. Application of the CFS PML to the absorption of evanescent waves in waveguides[J]. IEEE Microwave Wireless Compon. Lett. 2002,12(6) : 218-220.
  • 4Mitchell A, Kokotoff D M, Austin M W. Improvement to the PML boundary condition in the FEM using mesh compression[J]. Microwave Theory and Techniques, IEEE Transactions on,2002,50(5):1297-1302.
  • 5R F Harriting. Time-Harmonic Electromagnetic Fields[M]. McGraw-Hill Book Company, INC. 1961.
  • 6Ruey-Beei Wu. A wideband waveguide transition design with modified dielectric transformer using edge-based tetrahedral finite-element analysis [J]. IEEE Trans. Microwave Theory Teeh. , 1996,44 (7) : 1024-1031.
  • 7周平,徐金平.矩形波导结中多介质柱散射特性边界元法分析[J].电波科学学报,2001,16(3):295-300. 被引量:2
  • 8Luis Valor and Juan Zapata. An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials[J]. IEEE Trans Microwave Theory Tech.,1996,MTT-44(2) :291-296.
  • 9Arena D, Ludovico M, Manara G, et al.. A hybrid mode matching/FEM technique with edge elements for solving waveguides discontinuity problems[J]. Antennas and Propagation Society International Symposium,2000, IEEE, Volume: 4 , 16-21, July 2000, 2028-2O31.

二级参考文献3

  • 1Wu K L,IEEE Trans Microwave Theory Techniques,1989年,37卷,6期,993页
  • 2Hsu G,IEEE Trans Microwave Theory Tech,1986年,34卷,8期,883页
  • 3Leviatan Y,IEEE Trans Microwave Theory Techniques,1983年,31卷,7期,806页

共引文献1

同被引文献10

  • 1何小祥,徐金平.改进的IPO与FEM混合法分析复杂电大腔体电磁散射[J].电波科学学报,2004,19(5):607-612. 被引量:15
  • 2Goldberg M.Stability criteria for finite difference approximations to parabolic systems[J].Applied Numerical Mathematics,2000,33(4):509-515.
  • 3T Namiki.A new FDTD algorithm based on alternating direction implicit method[J].IEEE Trans.on Microwave Theory and Techniques,1999,47(10):2003-2007.
  • 4J F Lee,Robert Lee,Andreas Cangellaris.Time-do-main finite-element methods[J].IEEE Trans.Antenhas Propagant.1997,45(3):430-442.
  • 5M F Wong,O Pieon,and V F Hanna.A finite-element method based on whitney forms to solve Maxwell equations in the time-domain[J].IEEE Trans.Magn,1995,31(3):1618-1621.
  • 6J M Jin,M Zunoubi,K C Donepudi,et a1.Frenquency-domain and time-domain finite-element solution of Maxwell’s equations using spectral lanczos decomposition method[J].Comput.Methods Appl.Mech.Engrg,1999,169(3):279-296.
  • 7N M Newmark.A method of computation for strutrural dynamics[J].Journal of the Engineering MechanicsDivision,ASCE,1959,85(7):67-94.
  • 8O C Zinenkiewicz.A new 1ook at the Newmark,Houboult and other time stepping formulas.A weighted residual approach[J].Earthquake Engineering and Structural Dynamics,1977,5(4):413-418.
  • 9S D Gedney,Umesh Navsariwala.An unconditionally stable finite element time-domain solution of the vevtor wave equation[J].IEEE Microwave and Guided Wave Letters,1995,5(10):332-334.
  • 10D Jiao,J M Jin.A General Approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations[J].IEEE Trans.on Antennas Propagation,2002,50(11):1624-1631.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部