期刊文献+

Petrogenesis of Mesozoic High-Mg Diorites in Western Shandong: Evidence from Chronology and Petro-geochemistry 被引量:24

Petrogenesis of Mesozoic High-Mg Diorites in Western Shandong: Evidence from Chronology and Petro-geochemistry
下载PDF
导出
摘要 The high-Mg diorites, widely occurring in western Shandong, have important implications in the study of the relationship between the Mesozoic magmatism and the nature of the lithosphere and its thinning period in the eastern North China craton (NCC). The Tietonggou and Jinling intrusions are typically representatives. LA-ICP-MS zircon U-Pb dating, major and trace element and Sr-Nd isotopic compositions of the Mesozoic intrusive rocks from western Shandong, eastern China, were analyzed. The weighted mean 106^pb/ 238^U ages from LA-ICP-MS zircon U-Pb dating results for early norite-diorite, late pyroxene-diorite from the Tietonggou intrusion and biotite-diorite from the Jinling intrusion are (131.4±4.9) Ma(n=15), (134. 5±2.3) Ma(n=13), and (132.8±4. 2) Ma(n=12), respectively, implying that they were formed in the Early Cretaceous. The weighted mean 207^pb/ 204^Pb ages for round zircons from late pyroxene-diorite in the Tietonggou intrusion is ( 2 513 ± 54) Ma( n= 8), suggesting that the basement of the North China craton should exist in the research area. The high-Mg diorites are characterized by enrichment in MgO, Na20, and light rare earth elements (LREE), and they are poor in heavy rare earth elements (HREE) and high field strength elements (HFSE), being similar to adakite. The existence of the mantle peridotite xenoliths with a high-Mg feature for these intrusive rocks implies that their primary magma should be derived from the upper mantle. However, Sr-Nd isotopic composi- tions (Is: 0.704 75--0.707 15;ENd (130 Ma) values: --3.95 to -- 13.30), depletion in HFSE, and the occurrence of Archean inherited zircons suggest that crustal materials could be involved in the derivation of the primary magma. The compositional difference between the diorites from the Tietonggou and Jinling intrusions could be attributed to those of magma sources and degrees of partial melting. The Early Cretaceous high-Mg diorites are considered to have been formed by the mixed melting of the delaminated lithosphere (lithospheric mantle + crust) and asthenosphere, based on their geochemistry, the mantlederived xenoliths, and the Early Mesozoic lithospheric evolutionary history of the eastern North China craton. The high-Mg diorites, widely occurring in western Shandong, have important implications in the study of the relationship between the Mesozoic magmatism and the nature of the lithosphere and its thinning period in the eastern North China craton (NCC). The Tietonggou and Jinling intrusions are typically representatives. LA-ICP-MS zircon U-Pb dating, major and trace element and Sr-Nd isotopic compositions of the Mesozoic intrusive rocks from western Shandong, eastern China, were analyzed. The weighted mean 106^pb/ 238^U ages from LA-ICP-MS zircon U-Pb dating results for early norite-diorite, late pyroxene-diorite from the Tietonggou intrusion and biotite-diorite from the Jinling intrusion are (131.4±4.9) Ma(n=15), (134. 5±2.3) Ma(n=13), and (132.8±4. 2) Ma(n=12), respectively, implying that they were formed in the Early Cretaceous. The weighted mean 207^pb/ 204^Pb ages for round zircons from late pyroxene-diorite in the Tietonggou intrusion is ( 2 513 ± 54) Ma( n= 8), suggesting that the basement of the North China craton should exist in the research area. The high-Mg diorites are characterized by enrichment in MgO, Na20, and light rare earth elements (LREE), and they are poor in heavy rare earth elements (HREE) and high field strength elements (HFSE), being similar to adakite. The existence of the mantle peridotite xenoliths with a high-Mg feature for these intrusive rocks implies that their primary magma should be derived from the upper mantle. However, Sr-Nd isotopic composi- tions (Is: 0.704 75--0.707 15;ENd (130 Ma) values: --3.95 to -- 13.30), depletion in HFSE, and the occurrence of Archean inherited zircons suggest that crustal materials could be involved in the derivation of the primary magma. The compositional difference between the diorites from the Tietonggou and Jinling intrusions could be attributed to those of magma sources and degrees of partial melting. The Early Cretaceous high-Mg diorites are considered to have been formed by the mixed melting of the delaminated lithosphere (lithospheric mantle + crust) and asthenosphere, based on their geochemistry, the mantlederived xenoliths, and the Early Mesozoic lithospheric evolutionary history of the eastern North China craton.
出处 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期297-308,共12页 中国地质大学学报(英文版)
基金 ThispaperissupportedbytheNationalNaturalScienceFoundationofChina(Nos.40472033,40133020)andtheKeyLaboratoryofContinentalDynamics,NorthwesternUniversity.
关键词 high-Mg diorite CHRONOLOGY get chemistry MESOZOIC western Shandong. high-Mg diorite, chronology, get,chemistry, Mesozoic, western Shandong.
  • 相关文献

同被引文献378

引证文献24

二级引证文献478

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部