期刊文献+

基于小波变换和尺度共生矩阵的超声图像分割

A Method for Image-Segmentation Based on Wavelet Transform and Scale Co-occurrence Matrix
下载PDF
导出
摘要 超声图像所固有的特性使得图像分割比较困难,尤其是应用计算机实现超声图像的自动分割技术远不能达到实际需要,因此,超声图像的分割是亟待解决的一个难题。文中将图像树型框架小波变换、尺度共生矩阵和自组织神经网络聚类相结合应用于超声图像提出一种分割方法。实验表明,应用所提出的方法可得到比较清晰的分割结果,显著提高分割图像的对比度。 Due to the characteristics of ultrasonic image, ultrasonic image segmentation is more difficult, especially to implement ultrasonic image segmentation automatically. It is still an urgent and tough problem to implement ultrasonic image segmentation effectively. This paper proposes a new image segmentation method, which integrates the theory of tree-structured frame-wavelet transform, scale matrix (SCM), and self-organizing neural network and applies them to the clinical ultrasonic image finish segmentation. Experiment results show a clearer segmented image with a high contrast can be obtained with the proposed method.
作者 吴国庆
出处 《电子工程师》 2005年第12期29-32,共4页 Electronic Engineer
关键词 超声图像分割 小泼变换 尺度共生矩阵 目组织神经网络 ultrasonic image segmentation, wavelet transform, scale co-occurrence matrix, self-organi zing neural network
  • 相关文献

参考文献7

  • 1严加勇,庄天戈.医学超声图像分割技术的研究及发展趋势[J].北京生物医学工程,2003,22(1):67-71. 被引量:21
  • 2Windyga P S. Fast Impulsive Noise Removal. IEEE Trans on Image Processing, 2001, 10(1): 173 ~ 179.
  • 3Chang Tianhorng, Kuo C C J. Texture Analysis and Classification with Tree-structured Wavelet Transform. IEEE Trans on Image Processing, 1993, 2(4) :429 ~441.
  • 4Unser M. Texture Classification and Segmentation Using Wavelet Frames. IEEE Trans on Image Processing, 1995, 4(11) :1549 ~1560.
  • 5Haralick R M. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, 1979, 67(5) :786 ~804.
  • 6Kohonen T. The Self-organizing Map. Proceedings of the IEEE, 1990, 78(9) :1464 ~ 1480.
  • 7Zhang Y J. A Survey on Evaluation Methods for Image Segmentation. Pattern Recognition. 1996, 29 (8): 1335 ~ 1346.

二级参考文献16

  • 1[17]Deng J W, Tsui H T. A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters, 2002,23 (1): 161-169
  • 2[1]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285
  • 3[2]Fan L, Braden G A, Herrington D M. Nonlinear wavelet filter for intra-cononary ultrasound images. Proceedings of the 1996 23rd Annual Meeting on Computers in Cardiology, 1996, P41 -44
  • 4[3]AarninkRG, GiesenRJB, HuynenAL, etal. A practical clinical method for method for contour determination in ultrasonographic prostate images. Ultrasound in Med & Biol, 1994, 20 (8): 705 - 717
  • 5[4]Brathwaite P A, Chandran K B, McPherson D D, et al. Lumen detection in human IVUS images using region-growing. Computers in Cardiology, 1996, (9): 37-40
  • 6[5]Mignotte M, Meunier J, Tardif J C. Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and Markov random fields. Pattern Analysis & Application, 2001, (4):256-271
  • 7[7]Lee B, Yan J Y, Zhuang T G. A dynamic programming based algorithm for optimal edge detection in ultrasound images. Proceedings of SPIE, 2001, 4549: 135- 140
  • 8[8]Kass M, Witkin A, Terzopoulos D. Snakes: active contour models.IJCV, 1988, 1 (1): 31-331
  • 9[9]Yoshida H, Keserci B, Casalino D D, et al. Segmentation of liver tumors in Ultrasound Images based on scale-space analysis of the continuous wavelet transform. IEEE international ultrasonics symposium,Oct. 5-8, Sendai, Japan, 1998
  • 10[10]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部