摘要
设G=(V,E)是二部图,D是G的一个定向具有出度序列(dD+(v)v∈V).设fD(v)=dD+(v)+1是定义在V上的整数函数.在本文中我们利用代数方法证明了G是fD-可选的,并由此推出G是Δ(2G)+1)-可选的,2d-正则偶图是(d+1)-可选的.定义了欧拉图的半度-可选概念,并给出了一类半度-可选的欧拉非偶图.最后,提出了刻化半度-可选的欧拉图.
Let G = (V,E) be a bipartite graph and Dan orientation of Gwith out-degree sequence (dv+ (v) |v ∈ V) . Let fn(v)=dD^+ (v) + 1 be a function of integers defined onV. In this paper, by using algebra method we prove that G is fD-choosable. In particular, G is ([((△(G))/2]+1) -choosable, 2d-regular bipartite is (d + 1) - choosable. We also define half-degree choosable for Euler graphs and give a class of such graphs that are not bipartite. At last we suggest a problem to characterize the half-degree choosable Euler graphs.
出处
《新疆大学学报(自然科学版)》
CAS
2005年第3期253-257,共5页
Journal of Xinjiang University(Natural Science Edition)
基金
ProiectXJEDU2004IBSapportedbyEducationofXinjiang.
关键词
列表着色
图多项式
半度-可选
List-coloring
Graph polynomial
half-degree Choosable