期刊文献+

关于二部图和欧拉图的列表着色(英文)

On the List Colorings of the Bipartite Graphs and Euler Graphs
下载PDF
导出
摘要 设G=(V,E)是二部图,D是G的一个定向具有出度序列(dD+(v)v∈V).设fD(v)=dD+(v)+1是定义在V上的整数函数.在本文中我们利用代数方法证明了G是fD-可选的,并由此推出G是Δ(2G)+1)-可选的,2d-正则偶图是(d+1)-可选的.定义了欧拉图的半度-可选概念,并给出了一类半度-可选的欧拉非偶图.最后,提出了刻化半度-可选的欧拉图. Let G = (V,E) be a bipartite graph and Dan orientation of Gwith out-degree sequence (dv+ (v) |v ∈ V) . Let fn(v)=dD^+ (v) + 1 be a function of integers defined onV. In this paper, by using algebra method we prove that G is fD-choosable. In particular, G is ([((△(G))/2]+1) -choosable, 2d-regular bipartite is (d + 1) - choosable. We also define half-degree choosable for Euler graphs and give a class of such graphs that are not bipartite. At last we suggest a problem to characterize the half-degree choosable Euler graphs.
出处 《新疆大学学报(自然科学版)》 CAS 2005年第3期253-257,共5页 Journal of Xinjiang University(Natural Science Edition)
基金 ProiectXJEDU2004IBSapportedbyEducationofXinjiang.
关键词 列表着色 图多项式 半度-可选 List-coloring Graph polynomial half-degree Choosable
  • 相关文献

参考文献6

  • 1Erdos P, Rubin A L and Taylor H. Choosability in graphs[J]. In:Proc. West Coast Conference on Combinatories,Graph Theory and Computing, Arcata, 1979.26:125-157.
  • 2Vizing V G. Coloring the vertices of a graph in prescribed colors[J]. Diskret. Anal. 1976,29: 3-10.
  • 3Alon N. Restricted colorings of graphs, Surveys in Combinatories,Proc. 14th-British Combinatorial Conference[C].London Mathematical Society Lecture Notes Series, 1993,187: 1-33.
  • 4Tuza Z. Graph colorings with local constraints-a survey[J]. Discussiones Mathematicae Graph Theorey, 1997,17(2):161-228.
  • 5Bollobas B. Modern Graph Theory[M]. Springer-Verlag New York.Inc.. 1998.
  • 6Alon N and Tarsi M. Colorings and orientations of graphs[J]. Combina torics, 1992.12: 125-134.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部