期刊文献+

大陆下地壳高电导率的起源:矿物中的结构水 被引量:13

The Possible Effect of Hydrogen on the High Electrical Conductivity in the Lower Continental Crust
下载PDF
导出
摘要 大地电磁学的测定结果显示,大陆下地壳可能具有异常高的电导率(10^-4~10^-2S/m)。认识这种异常现象的起源,对于更好地理解地球内部的结构和一些典型的地质学过程具有重要的意义。虽然目前有多种机制试图对大陆下地壳高电导率现象进行解释,但是争论依然激烈,已有的模型(含水矿物模型、孔隙流体模型、颗粒边界石墨膜模型和正空穴电子对模型等)都不能提供令人信服的答案。对安徽女山下地壳麻粒岩包体中的主要组成矿物(斜长石、斜方辉石、单斜辉石)的Micro-FTIR分析表明:这三种矿物普遍含有结构水,含量分别可以高至~1700×10^-6、-1600×10^-6和~2400×10^-6。麻粒岩中结构水的存在可能会对大陆下地壳的电导率分布产生重要的影响,从而可能为认识其起源提供一个新的解释方法。 Magnetolluric measurements show that the lower continental crust has remarkably high electrical conductivity which is about 10^-4- 10^-2 S/re. Tracing the origin of this phenomenon will have important implications to understand the structure and some typical geological processes in the interior of the Earth. Many mechanisms, among which the most probable candidates are models of hydrous minerals, interconnected saline pore fluids, interconnected grain boundary films of graphite and positive hole pairs, were presented for the explaination. However, none of them is totally reasonable and controversy still exists. Micro-FTIR analysis performed on minerals (plagioclase, clinopyroxene and orthopyroxene) in granulite xenoliths from Nushan demonstrated that all these minerals contained water incorporated in the structure as OH with the content (H20 wt. ) up to - 1700 × 10^-6 for plagioclase, -1600 × 10^-6 for orthopyroxene and -2400 ×10^-6 for clinopyroxene, respectively. The water (hydrogen) may have dramatic effect on the electrical conductivity of the lower continental crust and thus provides a more possible explanation.
出处 《地球科学进展》 CAS CSCD 北大核心 2006年第1期31-38,共8页 Advances in Earth Science
基金 国家自然科学基金项目"中国东部地幔交代作用稳定同位素(O-H-C)示踪"(编号:40473007) 教育部"新世纪优秀人才支持计划"项目 中国科学院研究生创新课题资助
关键词 电导率 大陆下地壳 麻粒岩 结构水 Lower continental crust Electrical conductivity Granulite Hydrogen.
  • 相关文献

参考文献63

  • 1Law L K.Riddihough R P.A geographical relation between geomagnetic variation anomalies and tectonics[J].Canadian Journal of Earth Science.1971.8:1094-1105.
  • 2Haak V,Hutton R. Electrical resistivity in continental lower crust[J]. Geological Society, 1986, 24 ( Special Publication) : 35-49.
  • 3Jones A G, Electromagnetic images of modem and ancient subduction zones [J].Tectonophysics,1993, 219: 29-45.
  • 4Vanyan L L, Progress report on ELAS project [ J ]. International Association of Geomagnetism and Aeronomy, News, 1980, 19 : 73-77.
  • 5Shankland T J, Ander M E. Electrical conductivity, temperatures and fluids in the lower crust [ J ]. Journal of Geophysical Research,1983, 88:527-538.
  • 6Hjelt S E. Regional EM studies in the 80s,1988 [J]. Surveys in Geophysics, 1988, 9:349-387.
  • 7Jones A G. Electrical conductivity of the continental lower crust[A]. In: Fountain D M, Arculus R J, Kay R W,eds. Continental Lower Crust [C]. Amsterdam: Elsevier, 1992:81-143.
  • 8Hyndman R D, Vanyan L L, Marquis G, et al. The origin of electrically conductivity lower continental crust: Saline water or graphite [J]. Physics of the Earth and Planetary Interiors, 1993, 81:325-345.
  • 9Stesky R S, Brace W F. Eletrical conductivity of serpentinised rocks to 6 kbars [J]. Journal of Geophysical Research, 1973, 98:4301-4310.
  • 10Van Zijl J S V. The relationship between the deep electrical resistivity structure and teclonic provinces in southern Africa. Part 1 : Results obtained by Schlumberger soundings [ J]. Transactions of the Geological Survey of South Africa, 1978, 81 : 129-142.

同被引文献334

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部