摘要
本文论述了与给定切线多边形相切的有理二次Bézier曲线,构造曲线是曲率连续的,具有局部可调性,且对切线多边形是保形的;跟三次(四次)Bézier曲线或B样条曲线方法相比,具有切点的变动范围更大、曲线次数低、结构简单、计算量少、显示更快的特点。最后,通过实例加以说明。
This paper proposes an approach of constructing rational quadratic Bézier curves with all edges tangent to a given control polygon. The curve is joined by piecewise as G^2-continuity and shape-preserving to the tangent polygon. The rational quadratic Bézier curve is less of computation than the curves with the cubic(quartic) B6zier and cubic(quartic) B- Spline curves. Pinally, two examples show that the method given in this paper is effective for CAGD.
出处
《计算机工程与科学》
CSCD
2006年第1期59-61,共3页
Computer Engineering & Science
基金
湖南省教育厅资助项目