摘要
给出一对锥约束多目标非线性规划的二阶对称对偶问题,以及二阶F凸函数类的概念.在二阶F凸假设下证明了真有效解的对偶性质———弱对偶性、强对偶性及逆对偶性.
A pair of second order symmetric dual problems in multiobjective nonlinear programming with cone constraints is formulated, and the definitions of a class of second-order F- convex functions are introduced, Then, under the second-order F- convex assumptions, dual theorems (weak duality, strong duality and converse duality) related to the properly efficient solution are proved,
出处
《应用数学》
CSCD
北大核心
2006年第1期127-133,共7页
Mathematica Applicata
基金
SupportedbytheNaturalScienceFoundationofJiangsuHighSchool(03KJB110012)andJiangsuEducationOffice(00KJD110001,01KJD110005)
关键词
多目标规划
二阶对称规划
锥约束
真有效解
二阶F-凸性
对偶定理
Multiobjective program
Second-order symmetric programs
Cone constraint
Properly efficient solution
Second-order F- convexity
Duality theorems