期刊文献+

锥约束多目标规划的二阶对称对偶性质(英文) 被引量:3

Second-order Symmetric Duality for a Multiobjective Programming Problem with Cone Constraints
下载PDF
导出
摘要 给出一对锥约束多目标非线性规划的二阶对称对偶问题,以及二阶F凸函数类的概念.在二阶F凸假设下证明了真有效解的对偶性质———弱对偶性、强对偶性及逆对偶性. A pair of second order symmetric dual problems in multiobjective nonlinear programming with cone constraints is formulated, and the definitions of a class of second-order F- convex functions are introduced, Then, under the second-order F- convex assumptions, dual theorems (weak duality, strong duality and converse duality) related to the properly efficient solution are proved,
作者 陈秀宏
出处 《应用数学》 CSCD 北大核心 2006年第1期127-133,共7页 Mathematica Applicata
基金 SupportedbytheNaturalScienceFoundationofJiangsuHighSchool(03KJB110012)andJiangsuEducationOffice(00KJD110001,01KJD110005)
关键词 多目标规划 二阶对称规划 锥约束 真有效解 二阶F-凸性 对偶定理 Multiobjective program Second-order symmetric programs Cone constraint Properly efficient solution Second-order F- convexity Duality theorems
  • 相关文献

参考文献10

  • 1Devi G. Symmetric duality for nonlinear programming problem involving η- bonvex functions[J]. European Journal of Operational Research, 1998,104:615 - 621.
  • 2Dorn WS. A symmetric dual theorem for quadratic programs[J]. Journal Operational Research of Society Japan, 1960,2 : 93-97.
  • 3Gulati T R, Husain I. Ahmed A. Multiobjective symmetric duality with invexity[J]. Bulletin of the Australian Mathematical Society, 1997,56 : 25-36.
  • 4Kim D S, Yun Y B, Lee W J. Multiobjective symmetric duality with cone constraints[J]. European Journal of Operational Research, 1998,107 : 686-691.
  • 5Mishra S K. Multiobjective second order symmetric duality with cone constraints[J]. European Journal of Operational Research, 2000,126 : 675-682.
  • 6Mishra S K. Second order symmetric duality in mathematical programming with F- convexity[J]. European Journal of Operational Research, 2000,127 : 506 - 518.
  • 7Mond B,Weir T. Symmetric duality for nonlinear multiobjective programming[A]. S. Kumar. Recent Developments in Mathematical Programming[C]. London:Gordon and Breach, 1997,137-153.
  • 8Nanda S,Das N. Pseudo-invexity and duality in nonlinear programming[J]. European Journal of Operational Research, 1996,88 : 572-577.
  • 9Pandey S. Duality for multiobjective fractional programming involving generalized η- bonvex functions[J].Opsearch, 1991,28(1) : 36-43.
  • 10Weir T,Mond B. Symmetric and self duality in multiobjective programming[J]. Asia-Pacific Journal of Operational Research, 1988,4 : 124-133.

同被引文献14

  • 1杨新民.两类非线性规划的对称对偶性[J].重庆师范学院学报(自然科学版),1993,10(2):5-8. 被引量:1
  • 2Mishra S K.Second order symmetric duality in mathematical programming with F- convexity[J]. European Journal of Operational Research,2000,127:506 - 518.
  • 3Fritz, John, Extremum problems with inequalities as side conditions, in: Studies and Essays, Courant Anniversary Volume, K. O. Friedrichs, O. E. Neugenbauer, and J. J. Stoker(eds. ), hterscience, New York, 1968,187 - 204.
  • 4Dantzing G B, Eisenberg E and Cottle R W. Symmetric dual nonlinear programs[ J]. Pacific J Math, 1965,15,809- 812.
  • 5Mond B. A symmetric dual theorem for nonlinear programs[ J]. Quart Appl Math, 1965,23,265 - 269.
  • 6Bazaraa M S, Goode J J. On symmetric duality in nonlinear programming[ J ]. Operation Research, 1973,21,1 - 9.
  • 7Mond B, Weir T. Generalized concavity and duality, in "Generalized Concavity in Optimization and Economics" [ M]. New York: Academic Press, 1981,263 - 279.
  • 8Dantzig G B,Eisenberg E,Cottle R W. Symmetric dual nonlinear programs[J].Pacific Journal of Mathematics,1965.809-812.
  • 9Mond B,Weir T. Symmetric duality for nonlinear muhiobjective programming[A].London:Gordon and Breach,1997.137-153.
  • 10Bazaraa M S,Goode J J. On symmetric duality in nonlinear programming[J].Operations Research,1973.1-9.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部