期刊文献+

基于稳定流形的方法实现混沌系统的同步

Stable-manifold-based method for realizing chaos synchronization
下载PDF
导出
摘要 在非保守自治系统中,许多混沌系统都可作为耗散系统,因此,在这样的混沌系统中存在至少一维的稳定流形,利用这些流形可以设计恰当的控制策略.基于稳定流形的方法实现混沌系统的同步是当混沌轨道进入到稳定流形的小邻域内的时候,开始施加控制信号.一旦两个非直接耦合的混沌系统的轨迹到达这些稳定流形,其误差系统渐进趋于原点,从而实现两系统的同步.并通过Chen系统和Rossler系统的分析和数值模拟研究验证了这种方法的可行性与有效性. Many chaotic systems can be regarded as dissipative systems. So, there must exist at least one-dimensional stable manifold within the chaotic dynamics. By using these manifolds we can design appropriate control strategies. A stable-manifold-based method for realizing the synchronization is, namely, when chaotic orbit enters a small neighbor, the controller acts on the nonlinear system; when the trajectories of two unidirectional-coupled chaotic system arrive at this manifold, the error dynamics is global asymptotical stable at origin. Therefore, the synchronization of two chaotic systems is realized. Finally, the possibility and effectiveness of this method are tested by numerical simulations on Chen system and Rossler system.
作者 丁娟 姚洪兴
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第B12期62-65,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(90210004) 国家博士后基金资助项目(2003033498) 江苏省教育厅基金资助项目(03KJD110070 03SJB630002)
关键词 稳定流形 混沌同步 CHEN系统 ROSSLER系统 stale-manifold chaos synchronization Chen system Rossler system
  • 相关文献

参考文献8

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett,1990, 64(8) : 821 -824.
  • 2Zhou T, Lu J, Chen G, Tang Y. Synchronization stability of chaotic array with linear coupling[ J]. Physics Letters A ,2002, 301:231 - 240.
  • 3Chen Shihua, Zhang Qunjiao, Xie Jin, et al. A stable-manifold-based method for chaos control [ J]. Chaos,Solitons and Fractals ,2004, 20:947 - 954.
  • 4Arnold V I. Geometrical Method in the Theory of Ordinary Differential Equations [ M ]. New York : Springer-Verlag, 1988.
  • 5Gurkenheimer J, Hdmes P. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector. Fields[ M]. New York: Springer-Verlag, 1986.
  • 6Yu X, Chen G, Xia Y, Cao Z. An invariant-manifold-based method for chaos control [J]. IEEE Trans Circuits Syst 1, 2001, 48:930-937.
  • 7王俊霞,卢殿臣,田立新,张正娣.用非线性反馈法实现混沌系统自同步[J].江苏大学学报(自然科学版),2004,25(4):332-335. 被引量:7
  • 8张正娣,田立新.Chua’s系统的追踪控制与同步[J].江苏大学学报(自然科学版),2003,24(6):9-12. 被引量:13

二级参考文献13

  • 1张正娣,田立新.Chua’s系统的追踪控制与同步[J].江苏大学学报(自然科学版),2003,24(6):9-12. 被引量:13
  • 2LI Shi-hua, TIAN Yu-ping. Finite time synchronization of chaotic systems[J]. Chaos, Solitons and Fractals,2003, 15(2):303-310.
  • 3LU Jin-hu, ZHOU Tian-shou. Chaos synchronization between linearly coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2002, 14(4): 529-541.
  • 4Julien Clinton Sprott. Chaos and Time-Series Analysis[M]. Oxford University Press,2003.
  • 5Enbo Wei. New method to obtain the power spectra of hidden variables and its application to ocean data[J]. Chinese Journal of Ocean Logy and Limnology ,2001,19(1):29-34.
  • 6Ricardo Femat. Synchronization of Chaotic Systems with Different Order [ J ]. Physical Review E, 2002, 65: 0362261 - 7.
  • 7Wang X F. Complex Networks:Topology, Dynamics and Synchronization[ J ]. Bifur Chaos, 2002, 12 (5): 885 - 916.
  • 8方天华.用非线性反馈函数法研究蔡电子线路的混沌同步[J].原子能科学技术,1997,31(6):488-492. 被引量:4
  • 9李丽香,彭海朋,卢辉斌,关新平.Hnon混沌系统的追踪控制与同步[J].物理学报,2001,50(4):629-632. 被引量:49
  • 10关新平,范正平,彭海朋,王益群.扰动情况下基于RBF网络的混沌系统同步[J].物理学报,2001,50(9):1670-1674. 被引量:35

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部