期刊文献+

(Zn,Ca) Solid-Solution Behavior and Its Effect on Luminescence Properties in Ca_(1-x)Zn_xTiO_3∶0.002Pr^(3+) Phosphors

(Zn,Ca) Solid-Solution Behavior and Its Effect on Luminescence Properties in Ca_(1-x)Zn_xTiO_3∶0.002Pr^(3+) Phosphors
下载PDF
导出
摘要 Nominal composition of Ca1-xZnxTiO3 : 0. 002Pr^3 + (x = 0. 000 - 0. 200) phosphors were prepared by conventional solid reaction route. XRD and PL measurements were used to investigate the solid-solution structure and luminescence properties of Zn-doped Ca1-xZnxTiO3:0.002Pr^3+ phosphors. The effect of solid-solution structure formed by substitution between Ca^2 + and Zn^2+ ions on the luminescent properties was analyzed. The results reveal that, with the increase of Zn substitution content below 0.010, lattice parameters and the intensity of excitation peak at both 260 and 330 nm as well as the corresponding 610 nm emission intensity are monotonously decreased quickly in a similar tendency. Also, the evolution of luminescence intensity and crystal cell parameters against Zn doping concentration are in good agreement. Above results are closely related with the structure change within Ca1- xZnxTiO3:0.002Pr^3+ solid-solution phase formed by the Zn ions substitution for the Ca sites. Present study reveals that the solid-solution structure formed by substitution between Ca^2+ and Zn^2+ ions has significant effect on the luminescence properties of single phase Ca1-xZnxTiO3:0.002Pr^3+ phosphors. Nominal composition of Ca1-xZnxTiO3 : 0. 002Pr^3 + (x = 0. 000 - 0. 200) phosphors were prepared by conventional solid reaction route. XRD and PL measurements were used to investigate the solid-solution structure and luminescence properties of Zn-doped Ca1-xZnxTiO3:0.002Pr^3+ phosphors. The effect of solid-solution structure formed by substitution between Ca^2 + and Zn^2+ ions on the luminescent properties was analyzed. The results reveal that, with the increase of Zn substitution content below 0.010, lattice parameters and the intensity of excitation peak at both 260 and 330 nm as well as the corresponding 610 nm emission intensity are monotonously decreased quickly in a similar tendency. Also, the evolution of luminescence intensity and crystal cell parameters against Zn doping concentration are in good agreement. Above results are closely related with the structure change within Ca1- xZnxTiO3:0.002Pr^3+ solid-solution phase formed by the Zn ions substitution for the Ca sites. Present study reveals that the solid-solution structure formed by substitution between Ca^2+ and Zn^2+ ions has significant effect on the luminescence properties of single phase Ca1-xZnxTiO3:0.002Pr^3+ phosphors.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期662-667,共6页 稀土学报(英文版)
基金 ProjectsupportedbyEducationDivisionofZhejiangProvince(20030265)andSRFforROCS SEM(2003-14)
关键词 Ca1-xZnxTiO3 Pr3+ solid solution LUMINESCENCE perovskite structure rare earths Ca1-xZnxTiO3 : Pr3+ solid solution luminescence perovskite structure rare earths
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部