期刊文献+

A SYMPLECTIC ALGORITHM FOR DYNAMICS OF RIGID BODY 被引量:1

A SYMPLECTIC ALGORITHM FOR DYNAMICS OF RIGID BODY
下载PDF
导出
摘要 For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations. For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期51-57,共7页 应用数学和力学(英文版)
关键词 rigid-body dynamics QUATERNION generalized momenta symplectic integration rigid-body dynamics quaternion generalized momenta symplectic integration
  • 相关文献

参考文献8

  • 1Elisabet V. Lens,Alberto Cardona,Michel Géradin.Energy Preserving Time Integration for Constrained Multibody Systems[J].Multibody System Dynamics.2004(1)
  • 2Shanshin Chen,Daniel A. Tortorelli.An Energy-Conserving and Filtering Method for Stiff Nonlinear Multibody Dynamics[J].Multibody System Dynamics.2003(4)
  • 3Simo J C,Tarnow N,Wong K.Exact energy-momentum conserving algorithms and sympectic schemes for nonlinear dynamics[].Computer Methods.1992
  • 4Baumgarte J W.A new method of stabilization for holonomic constraints[].ASME Journal of Applied Mechanics.1983
  • 5Leimkuhler B,S Reich.Symplectic integration of constrained Hamiltonian systems[].Mathematics of Computation.1994
  • 6Leimkuhler B,Skeel R D.Symplectic numerical integrators in constrained Hamiltonian systems[].Journal of Comparative Physiology.1994
  • 7Channell P,Scovel C.Symplectic integration of Hamiltonian systems[].Nonlinearity.1990
  • 8Chen S,Tortorelli D A,Hansen J M.Unconditionally energy stable implicit time integration:application to multibody system analysis and design[].International Journal for Numerical Methods in Engineering.2000

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部