摘要
在[Optics Letters 28(2003)680]一文中引入了复分数富里哀变换,它不同于通常的两维实分数富里哀变换。在本文中我们从Wigner分布的复形的转动的观点以及从在梯度折射率介质中光的传播的观点分别阐明复分数富里哀变换的定义。新建立的量子力学纠缠态表象把复分数富里哀变换和Wigner分布联系起来。
In a recent paper of Optics Letter (Fan Hongyi and Lu Hailiang, Optics Letters 28 (2003) 680) the complex fractional Fourier transform (CFFRT) is introduced, which is different from the usual two-dimensional real fractional Fourier transforms. In the present work we illuminate its definition from the point of view of rotation of the complex form of Wigner distributions as well as from the view of optical propagation mechanism in graded-index medium. The newly constructed quantum mechanical entangled state representations are used to link CFFRT to the Wigner distributions.
出处
《量子电子学报》
CAS
CSCD
北大核心
2006年第1期50-56,共7页
Chinese Journal of Quantum Electronics
基金
National Natural Science Foundation of China under grant 10475657the President Foundation of Chinese Academy of Science
关键词
复分数傅里叶变换
WIGNER分布
梯度折射率
纠缠态表象
complex fractional Fourier transform
Wigner distrubution
graded-index
entangled state representations