期刊文献+

用广义回归神经网络和遗传算法分析产量递减 被引量:3

Application of Generalized Regression Neural Network and Genetic Algorithm to Production Decline Analaysis
下载PDF
导出
摘要 我国大多数油田开发已经进入到产量递减阶段,对这一阶段的相关理论有着迫切的需求。产量递减阶段的传统理论存在着不少缺点,使得它的应用受到了很大限制,应用效果也不是很好,主要的问题集中在对递减指数的求解上。广义回归神经网络(GRNN)和遗传算法(GA)都是在模拟人的生理活动进而提出的人工智能技术。GRNN对数据样本没有太多的要求,可以逼近任意类型的函数;GA可以进行全局搜优,也可以进行局部搜优。它们的联合应用可以克服传统理论的缺陷。首先建立GRNN神经网络,然后利用一种改进的GA搜索全局最优的平滑因子,最终建立模型,并把它们应用于孤岛油田产量递减期,取得了良好的效果。 Most oilfiehls developed in China up to now have already entered into the stage of production decline, so the theories about this stage are in urgent demand. But the shortages of conventional theory about it cause its application to be greatly restricted for the key problem of solution for decline index. The generalized regression neural network (GRNN) and the genetic algorithm (GA) are regarded as the artificial intelligence techniques. GRNN has little demand on data sampling, easily approaching to any type of functions; GA can be used to look for the best results in full and partial ranges. The combined application of these two techniques will overeome the shortages of conventional theory. This paper established the GRNN and uses an improved GA to search for the optimum smoothing factor in full range, hence proposes a model. By application of this model to Gudao oilfield in the stage of production decline, good effects are gained.
出处 《新疆石油地质》 CAS CSCD 北大核心 2006年第1期90-93,共4页 Xinjiang Petroleum Geology
关键词 产量递减 广义回归神经网络 遗传算法 孤岛油田 production decline generalized regression neural network (GRNN) genetic algorithm (GA) Gudao oilfieht
  • 相关文献

参考文献5

二级参考文献27

  • 1潘宗坤.油田自然递减率影响因素的分析[J].石油勘探与开发,1993,20(6):120-121. 被引量:13
  • 2Gentry R W, McCray A W. The effect of reservoir and fluid properties on production decline curves. SPE 6341.
  • 3HOLLAND J H. Adaptation in Natural and Artificial Systems [ M]. Ann Arbor, MI: University of Michigan Press, 1975.
  • 4SARFRAZ M, RAZA S A. Capturing Outline of Fonts Using Genetic Algorithm and Splines [A]. Proceedings of the Fifth International Conference on Information Visualisation (IV01) [ C]. IEEE Computer Society. NW Washington, DC USA: 1730 Massachusetts Ave, 2001: 738.
  • 5BYUNGJOO Y, DAWN J H. Efficient Genetic Algorithms for Training Layered Feedforward Neural Networks [ J]. Information Sciences, 1994, 76: 67-85.
  • 6RUDOLPH G. Covergence Analysis of Canonical Genetic Algorithms [ J ]. IEEE Transactions of Neural Networks Information Sciences, 1994, 5 (1): 96-101.
  • 7GOLDERG D E. Genetic Algorithms in Search, Optimization, and Machine Learning [ M]. Reading, MA: Addison-Weskey,1989.
  • 8LIANG Yan-chun, ZHOU Chun-guang. Advances in Identification of Nonlinear Characteristics of Packaging Based on Computational Intelligence [ J ]. Mechanics Research Communications, 2000, 27 (1): 15-20.
  • 9Hou Xianglin(侯祥麟).Chinese Petroleum Refining Technology(中国炼油技术).Beijing:China Petrochemical Press,1991.12
  • 10Nadaraya E A.On Estimating Regression.Theory of Probability and Its Applications,1964,9:141-142

共引文献70

同被引文献29

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部