期刊文献+

神经网络矢量量化的设计与实现 被引量:1

Design and implementation of vector quantization based upon a hybrid neural network
下载PDF
导出
摘要 设计了一种混合神经网络矢量量化编码方法。利用Kohonen网络的自组织聚类功能设计矢量量化器码书,实现矢量量化,用3层BP网络完成码字的信道符号编码。该神经网络矢量量化编码器能够并行处理输入矢量,速度快,效率高。 A coding scheme for vector quantization is presented by using a hybrid neural network. The clustering function of the Kohonen self organizing feature map is used to design codebook of vector quantizer and to carry out vector quantization, then the channel index for codeword is made by a three layers BP (Back Propagation) network. Processing input vectors in parallel mode fast and effectively, the vector quantization coder based upon neural networks is sutable for voice and image data compression.
出处 《长春邮电学院学报》 1996年第3期1-4,共4页 Journal of Changchun Post and Telecommunication Institute
基金 邮电部科学基金 邮电部中青年教师科学基金
关键词 神经网络 数据压缩 矢量量化 信道编码 Neural network Data compression Vector quantization
  • 相关文献

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部