摘要
In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.
In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.
基金
Research supported by National Natural Science Foundation of China