期刊文献+

Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices 被引量:37

Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices
原文传递
导出
摘要 When A ∈ B(H) and B ∈ B(K) are given, we denote by Mc an operator acting on the Hilbert space HΘ K of the form Me = ( A0 CB). In this paper, first we give the necessary and sufficient condition for Mc to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for some C ∈B(K,H). In addition, let σSF+(A) = {λ ∈ C : A-λI is not an upper semi-Fredholm operator} bc the upper semi-Fredholm spectrum of A ∈ B(H) and let σrsF- (A) = {λ∈ C : A-λI is not a lower semi-Fredholm operator} be the lower semi Fredholm spectrum of A. We show that the passage from σSF±(A) U σSF±(B) to σSF±(Mc) is accomplished by removing certain open subsets of σSF-(A) ∩σSF+ (B) from the former, that is, there is an equality σSF±(A) ∪σSF± (B) = σSF± (Mc) ∪& where L is the union of certain of the holes in σSF±(Mc) which ilappen to be subsets of σSF- (A) A σSF+ (B). Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space. When A ∈ B(H) and B ∈ B(K) are given, we denote by Mc an operator acting on the Hilbert space HΘ K of the form Me = ( A0 CB). In this paper, first we give the necessary and sufficient condition for Mc to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for some C ∈B(K,H). In addition, let σSF+(A) = {λ ∈ C : A-λI is not an upper semi-Fredholm operator} bc the upper semi-Fredholm spectrum of A ∈ B(H) and let σrsF- (A) = {λ∈ C : A-λI is not a lower semi-Fredholm operator} be the lower semi Fredholm spectrum of A. We show that the passage from σSF±(A) U σSF±(B) to σSF±(Mc) is accomplished by removing certain open subsets of σSF-(A) ∩σSF+ (B) from the former, that is, there is an equality σSF±(A) ∪σSF± (B) = σSF± (Mc) ∪& where L is the union of certain of the holes in σSF±(Mc) which ilappen to be subsets of σSF- (A) A σSF+ (B). Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期169-178,共10页 数学学报(英文版)
关键词 Semi-Fredholm operator Fredholm operator SPECTRUM Weyl's theorem Semi-Fredholm operator, Fredholm operator, Spectrum, Weyl's theorem
  • 相关文献

参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

同被引文献43

引证文献37

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部