期刊文献+

基于粒子群支持向量机的短期电力负荷预测 被引量:28

A short-term load forecasting approach based on PSO support vector machine
下载PDF
导出
摘要 在分析支持向量机SVM(Support VectorM ach ine)回归估计方法参数性能的基础上,提出粒子群算法PSO(Partic le Swarm Optim ization)优化参数的SVM短期电力负荷预测模型。PSO算法是一种新型的基于群体智能的随机优化算法,简单易于实现且具有更强的全局优化能力。用所建立的负荷预测模型编制的M atlab仿真程序,对某实际电网进行了短期负荷预测,结果表明预测精度更高。 On the basis of analyzing the parameter performance of support vector machine ( SVM ) for regression estimation, a shortterm load forecasting method based on SVM is presented in which the parameters in SVM are optimized by particle swarm optimization (PSO). PSO algorithm is a novel random optimization method based on swarm intelligence which has more powerful ability of global optimization. The experimental results prove that the presented SVM method optimized by PSO can achieve greater accuracy than ordinary SVM method whose parameters are selected with across validation.
出处 《继电器》 CSCD 北大核心 2006年第3期28-31,共4页 Relay
关键词 电力系统 短期负荷预测 支持向量机 粒子群 power systems short-term load forecasting support vector machine (SVM) particle swarm optimization (PSO)
  • 相关文献

参考文献7

二级参考文献21

  • 1[1]Vapnik VN. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Cherkassky V, Mulier F. Learning from Data-Concepts, Theory and Methods. New York: John Wiley Sons, 1998.
  • 3[3]Joachims T. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the European Conference on Machine Learning (ECML). Berlin: Springer-Verlag, 1998. 37~142.
  • 4[4]Weston GJ, Barnhill S. Gene selection for cancer classification using support vector machines. Machine Learning, 2002,46(1-3): 389~422.
  • 5[5]Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C, Smola A, eds. Advances in Kernel Methods: Support Vector Machines. Cambridge: MIT Press, 1998. 185~208.
  • 6[6]Smola AJ. Learning with kernels [Ph.D. Thesis]. University of Birlinghoven, 1998.
  • 7[7]Smola AJ, Scholkopf B. A tutorial on support vector regression. Technical Report, TR 1998-030. London: Royal Holloway College, 1998.
  • 8[8]Shevade SK, Keerthi SS, Bhattacharyya C. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000,11(5):1188~1194.
  • 9[9]Flake GW, Lawrence S. Efficient SVM regression training with SMO. Machine Learning Special Issue on SVMs, 2000,46(1~3): 271~290.
  • 10[10]Martin M. On-Line support vector machines for function approximation. Technical Report, LSI-02-11-R. Catalunya: Department of Software, Universitat Politecnica de Catalunya, 2002.

共引文献148

同被引文献211

引证文献28

二级引证文献249

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部