期刊文献+

汉语问答系统答案提取方法研究 被引量:8

Research on Answer Extracting for Chinese Question-answering System
下载PDF
导出
摘要 答案提取是问答系统的关键部分,文章介绍了汉语问答系统的基本结构及其实现过程,以问题和答案中关键词的词频统计特性为基础,进一步考虑问题和句子中关键词位置分布信息,提出了一种结合向量空间模型(VSM)和关键词最小匹配距离的问题和句子相似度的计算方法。并以相似度为基础,结合问题类别,对汉语基于事实的简单陈述问题进行了答案句子提取实验,结果表明该方法有较好的效果。 Answer extracting is the key part of question-answering system. The basic structure and realization of Chinese question-answering system are introduced. Based on the statistic feature of keyword frequency, the distribution of keywords in question and sentence is considered. And a similarity computation method between question and sentence, which combines vector space model (VSM) and keyword minimal matching span is proposed. According to question type and the similarity calculated above, answer-extracting experiment for Chinese factoid question is done. The experiment result shows that the method presented in this oaoer uets a very good effect.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第3期183-185,共3页 Computer Engineering
基金 云南省信息技术基金资助项目(2002IT03)
关键词 问答系统 答案提取 相似度 向量空间模型 最小匹配距离 Question-answering system Answer extracting Similarity Vector space model Minimal matching span
  • 相关文献

参考文献9

  • 1郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 2Voorhees E.Overview of the TREC 2003 Question Answering Track[C].Proceeding of the 11^th Text Retrieval Conference,Gaithersburg:NIST,2003:1-15.
  • 3Voorhees E,Tice D.The TREC-8 Question Answering Track Evaluation[C].Proceedings the Eighth Text Retrieval Conference,NIST,2000:83-105.
  • 4Zhang Dell,Wee Sun Lee.Question Classification Using Support Vector Machines[C].Proceedings of the 26^th ACM SIGIR.ACM Press,2003.
  • 5Li Xin,Roth D,Small K.The Role of Semantic Information in Learning Question Classifiers[C].Proceedings of the 1^st International Joint Conference on Natural Language Processing,2004:451-457.
  • 6Chang Chihchung,Lin Chihjen.LIBSVM:A Library for Support Vector Machines[Z].《http://www.csie.ntu.edu.tw/~cjlin/libsvm》,2001.
  • 7Yu Zhengtao,Fan Xiaozhong,Son Lizhe,et al.Chinese Question Classification Combining Syntactic and Semantic Feature[C].Proceedings of the 6^th Internation Symposium on Test and Measurement.Dalian:International Academic Publishers,2005.
  • 8Wu Lide,Huang Xuanjing,Guo Y,et al.FDU at TREC-9:CLIR,Filtering and QA Tasks[C].Proceedings of the 9th Text Retrieval Conferernce,2001:189-203.
  • 9Wu Lide,Huang Xuanjing,Zhou Yaqian,et al.FDUQA on TREC2003 QA Task[C].The 12th Text Retrieval Conference,Gaithersburg:NIST,2003.

二级参考文献11

  • 1[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 2[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 3[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 4[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 5[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 8[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[6]S-M Kim,D-H Baek,S-B Kim,H-C Rim. Question Answering Considering Semantic Categories and CoOccurrence Density. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献164

同被引文献63

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部