期刊文献+

MBE梯度掺杂GaAs光电阴极激活实验研究 被引量:8

Activation of Gradient Doping GaAs Photocathodes Grown by Molecular Beam Epitaxy
下载PDF
导出
摘要 本文首次利用分子束外延(MBE)生长了多种由体内到表面掺杂浓度由高到低的梯度掺杂反射式GaAs光电阴极材料,并进行了激活实验,结果表明,表面低掺杂浓度适中,外延层厚度2μm^3μm以及衬底为重掺杂p型GaAs的梯度掺杂GaAs光电阴极能够获得较高灵敏度。在优化激活工艺的条件下,梯度掺杂GaAs光电阴极获得了1798μA/lm的最高积分灵敏度,比采用同样方法制备的均匀掺杂GaAs光电阴极高30%以上。梯度掺杂GaAs光电阴极表面掺杂浓度较均匀掺杂的低,第一次给Cs时间较长,第一次Cs、O交替时要调整好Cs/O比,并在整个激活过程中保持不变。一个高量子效率梯度掺杂GaAs光电阴极的获得依赖于梯度掺杂结构和激活工艺两个方面的优化。 A novel gradient doping technique has been successfully developed, in which dopant concentration on the surface is lower than that of the epitaxial layers grown by molecular beam epitaxy(MBE).A variety of MBE reflecfion-mode GaAs photocathode materials were grown and doped by gradient doping,and activated for the first time. We found that fairly high integral sensitivity, can be achieved for the gradient doped GaAs photo-cathodes fihns,2 - 3μm thick with low surface dopant concentration, eptixially grown on heavily doped p-type GaAs(100) substrate. With optimized activation, the highest integral sensitivity, 1798μA/lm, is 30% higher than that of the conventional uniformly-doped photocathode materials. Since the surface dopant concentration of the gradient doped GAs photocathodc is lower than that of the uniformly doped GAs photocathode, the activation technique should be modified.The first Ca addition time should be longer and the current ratio of Cs and O in the initial(Cs, O) alternation should be carefully modulated and kept unchanged in the course of activation. We concluded that dopant profile and activation technique signficantly affect the quantum efficiency of gradient doped GaAs photocathode materials. There is still much room for improvement of these two factors.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2005年第6期401-404,共4页 Chinese Journal of Vacuum Science and Technology
基金 国防科技"十五"重点预研项目资助课题(No.404050501D)
关键词 分子束外延 梯度掺杂 GAAS光电阴极 量子效率 激活 Molecular beam epitaxy, Gradient doping, GaAs photocathode, Quantum efficiency, Activation
  • 相关文献

参考文献8

  • 1Vergara G,Gomez L J,Capmany J et al.Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes.Vacuum,1997,48(2):155~160.
  • 2杜晓晴,常本康,宗志园.GaAs光电阴极p型掺杂浓度的理论优化[J].真空科学与技术学报,2004,24(3):195-198. 被引量:6
  • 3Fu Rongguo,Chang Benkang,Qian Yunsheng et al.The Evaluation System of Negative Electron Affinity Photocathode APOC2001,Optoelectronics,Materials,and Devices for Communications,2001,4580:614~622.
  • 4Chang Benkang,Du Xiaoqing,Liu Lei et al.The automatic recording system of dynamic spectral response and its applications.SPIE,2003,5209:209~218.
  • 5Turnbull A A,Evans G B.Photoemission from GaAs-Cs-O.Journal of Physics D:Applied Physics,1968,1:155~160.
  • 6Fisher D G.The effect of Cs-O activation temperature on the surface escape probability of NEA (In,Ga)as photocathodes.IEEE Transaction on Electron Device,1974,ED-21:541~542.
  • 7Rodway D C,Allenson M B.In situ surface study of the activating layer on GaAs(Cs,O)photocathodes.Journal of Physics D:Applied Physics,1986,19:1353~1371.
  • 8Antypas G A,James L W,Uebbing J J.Operation of Ⅲ-Ⅴ semiconductor photocathodes in the semitransparent mode.Journal of Applied Physics,1970,41(7):2888~2894.

二级参考文献8

  • 1[1]Liu Y Z, Moll J L, Spicer W E. Quantum yield of GaAs semitransparent photocathedes. Applied Physics Letters, 1970, 17(2) :60 ~ 62
  • 2[2]Burt M G, Inkson J G. A study of emission from the (1,1,1)faces of GaAs negative electron affinity photoemitters. Journal of Physics D: Applied Physics, 1976,9:43 ~ 53
  • 3[4]施敏.半导体器件.北京:科学出版社,1992
  • 4[5]Fisher D G, Enstrom R E, Escher J S et al. Photoelectron surface escape probability of (Ga,In) As:Cs-O in the 0.9 to 1.6 μm.Journal of Applied Physics, 1972:43(9) :3815 ~ 3823
  • 5[7]中村胜吾.表面物理.北京:学术书刊出版社,1989
  • 6[8]Gao Huairong. Investigation of the mechanism of the activation of GaAs negative electron affinity phototocathodes. Journal of Vacuum Science Technology A, 1987,5(4): 1295 ~ 1298
  • 7[10]Williams B F, Tietjien J J. Current status of negative electron affinity devices. Proceedings of the IEEE, 1971,59(10): 1489~1497
  • 8[11]Antypas G A, Escher J S, Edgecumbe J et al. Broadband GaAs transmission photecathede. Journal of Applied Physics, 1978,49(7) :4301 ~ 4302

共引文献5

同被引文献108

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部