期刊文献+

Laguerre Geoinetry of Surfaces in R^3 被引量:4

Laguerre Geoinetry of Surfaces in R^3
原文传递
导出
摘要 Let f : M → R3 be an oriented surface with non-degenerate second fundamental form. We denote by H and K its mean curvature and Gauss curvature. Then the Laguerre volume of f, defined by L(f) = f(H2 - K)/KdM, is an invariant under the Laguerre transformations. The critical surfaces of the functional L are called Laguerre minimal surfaces. In this paper we study the Laguerre minimal surfaces in R^3 by using the Laguerre Gauss map. It is known that a generic Laguerre minimal surface has a dual Laguerre minimal surface with the same Gauss map. In this paper we show that any surface which is not Laguerre minimal is uniquely determined by its Laguerre Gauss map. We show also that round spheres are the only compact Laguerre minimal surfaces in R^3. And we give a classification theorem of surfaces in R^3 with vanishing Laguerre form. Let f : M → R3 be an oriented surface with non-degenerate second fundamental form. We denote by H and K its mean curvature and Gauss curvature. Then the Laguerre volume of f, defined by L(f) = f(H2 - K)/KdM, is an invariant under the Laguerre transformations. The critical surfaces of the functional L are called Laguerre minimal surfaces. In this paper we study the Laguerre minimal surfaces in R^3 by using the Laguerre Gauss map. It is known that a generic Laguerre minimal surface has a dual Laguerre minimal surface with the same Gauss map. In this paper we show that any surface which is not Laguerre minimal is uniquely determined by its Laguerre Gauss map. We show also that round spheres are the only compact Laguerre minimal surfaces in R^3. And we give a classification theorem of surfaces in R^3 with vanishing Laguerre form.
作者 Tong Zhu LI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1525-1534,共10页 数学学报(英文版)
基金 RFDP,973 project
关键词 Laguerre transformation Laguerre Gauss map Laguerre minimal surface Laguerre transformation, Laguerre Gauss map, Laguerre minimal surface
  • 相关文献

参考文献1

二级参考文献1

  • 1Hai Zhong LI Department of Mathematics, Tsinghua University. Beijing 100084. P. R. China Hui Li LIU Department of Mathematics, Northeastern University. Shenyang 110000. P. R. China Chang Ping WANG Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences. Peking University, Beijing 100871, P. R. China Guo Song ZHAO Department of Mathematics, Sichuan University, Chengdu 610064. P. R. China.Mobius Isoparametric Hypersurfaces in S^(n+1) with Two Distinct Principal Curvatures[J].Acta Mathematica Sinica,English Series,2002,18(3):437-446. 被引量:55

共引文献25

同被引文献20

  • 1HU Zejun,LI Haizhong Department of Mathematics, Zhengzhou University Zhengzhou 450052, China Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.Classification of hypersurfaces with parallel Mobius second fundamental form in S^(n+1)[J].Science China Mathematics,2004,47(3):417-430. 被引量:34
  • 2姬秀,胡传峰.R^5中的Laguerre等参超曲面(英文)[J].数学进展,2015,44(1):117-127. 被引量:2
  • 3BLASCHE W. Vorlesungen Ubei" Differentialgeometrie[M]. Berlin: Springer-Verlag, 1929.
  • 4MUSSO E, NICOLODI L. Laguerre geomery of surfaces with plane lines of curvature[J]. Abh Math Sem Univ Hamburg, 1999, 69: 123-138.
  • 5MUSSO E, NICOLODI L. The Bianchi-Darboux transformation of L-isothermic surfaces[J]. International Journal of Mathematics, 2000, 11- 911-924.
  • 6PALMER B. Remarks on a variation problem in Laguerre geometry[J]. Rendiconti di Mathematica, Serie VII, 1999, 19: 281-293.
  • 7LI Tong-zhu, WANG Chang-ping. Laguerre geometry of hypersurfacs in An[J]. Manuscripta Math, 2007 122: 73-95.
  • 8LI Tong-zhu, SUN Hua-fei. Laguerre isopaxaxmetric hypersurfaces in R4[j]. Acta Mathematica Sinica, English Series, 2011, 28: 1179-1186.
  • 9LI Tong-zhu, LI Hai-zhong, WANG Chang-ping. Classification of hypersurfacs with parallel Laguerre second fundamental form in An[J]. Differential Geom Appl, 2010, 28: 148-157.
  • 10LI Hai-zhong, WANG Chazag-ping. Mobius geometry of hypersurfacs with constant mean curvature and constant scalar curvature[J]. Manuscripta Math, 2003, 112: 1-13.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部