期刊文献+

A Multisymplectic Variational Framework for the Nonlinear Elastic Wave Equation 被引量:2

A Multisymplectic Variational Framework for the Nonlinear Elastic Wave Equation
下载PDF
导出
摘要 A multisymplectic variational internal energy corresponding equation, its associated local framework for the nonlinear elastic wave equation is presented. The modified to the approximate nonlinea.r elastic wave equation is derived, we obtain the energy and momentum conservation laws as well as the multisymplectic form simultaneously directly from the variational principle A multisymplectic variational internal energy corresponding equation, its associated local framework for the nonlinear elastic wave equation is presented. The modified to the approximate nonlinea.r elastic wave equation is derived, we obtain the energy and momentum conservation laws as well as the multisymplectic form simultaneously directly from the variational principle
作者 陈景波
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第2期320-323,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 40474047.
关键词 PROPAGATION INTEGRATORS FORMULATION COHOMOLOGY SANDSTONE GEOMETRY PDES PROPAGATION INTEGRATORS FORMULATION COHOMOLOGY SANDSTONE GEOMETRY PDES
  • 相关文献

参考文献14

  • 1Bridges T J 1997 Math. Proc. Cam. Phil. Soc. 121 147.
  • 2Marsden J E, Patrick G W and Shkoller S 1998 Comm.Math. Phys. 199 351.
  • 3Bridges T J and Reich S 2001 Phys. Lett. A 284 184.
  • 4Chen J B 2002 Lett. Math. Phys. 61 63.
  • 5Chen J B 2005 Lett, Math. Phys. 71 243.
  • 6Chen J B 2004 Commun. Theor. Phys. 41 561.
  • 7Chen J B 2004 Chin. Phys. Lett. 21 37.
  • 8Chen N 1996 Geophysics 61 1935.
  • 9Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun.Theor. Phus. 37 1.
  • 10Chen J B 2005 Chin. Phys. Lett. 22 1858.

同被引文献65

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部