期刊文献+

Deformation Twinning in Nanocrystalline Ni during Cryogenic Rolling

Deformation Twinning in Nanocrystalline Ni during Cryogenic Rolling
下载PDF
导出
摘要 Deformation twinning is evidenced by transmission electron microscopy examinations in electrodeposited nanocrystalline (nc) Ni with mean grain size 25nm upon cryogenic rolling. Two twinning mechanisms are confirmed to operate in nc grains, i.e. heterogeneous formation via emission of partial dislocations from the grain boundary and homogeneous nucleation through dynamic overlapping of stacking faults, with the former being determined as the most proficient. Deformation twinning in nc Ni may be well interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves. Deformation twinning is evidenced by transmission electron microscopy examinations in electrodeposited nanocrystalline (nc) Ni with mean grain size 25nm upon cryogenic rolling. Two twinning mechanisms are confirmed to operate in nc grains, i.e. heterogeneous formation via emission of partial dislocations from the grain boundary and homogeneous nucleation through dynamic overlapping of stacking faults, with the former being determined as the most proficient. Deformation twinning in nc Ni may be well interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第2期420-422,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 50471086, 50571110, 10472117, and 50021101, the National Key Basic Research and Development Programme of China under Grant. No 2004CB619305, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-SW-L2, and the National Center for Nanoscience and Technology of China.
关键词 MOLECULAR-DYNAMICS SIMULATION MECHANICAL-PROPERTIES PLASTIC-DEFORMATION METALS AL COPPER NICKEL TWINS SLIP MOLECULAR-DYNAMICS SIMULATION MECHANICAL-PROPERTIES PLASTIC-DEFORMATION METALS AL COPPER NICKEL TWINS SLIP
  • 相关文献

参考文献17

  • 1Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1.
  • 2Derlet P M, Hasnaoui A and van Swygenhoven H 2003 Scripta Mater. 49 629.
  • 3Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2004 Nature Mater. 3 43.
  • 4Van Swygenhoven H, Derlet P M and Froseth A G 2004 Nature Mater. 3 399.
  • 5Schiotz J 2004 Scripta Mater. 51 837.
  • 6Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M and Cheng X 2003 Science 300 1275.
  • 7Liao X Z, Zhou F, Lavernia E J,He D W and Zhu Y T 2003 Appl, Phys, Lett. 83 632.
  • 8Liao X Z, Zhou F, Lavernia E J, He D W and Zhu Y T 2003 Appl. Phys. Lett. 83 5062.
  • 9Liao X Z, Zhao Y H, Srinivasan S G, Zhu Y T, Valiev R Z and Gunderov D V 2004 Appl. Phys. Lett. 84 592.
  • 10Rosner H, Markinann J and Weissmuller J 2004 Philos.Magn. Lett. 84 321.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部