期刊文献+

Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems

Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems
下载PDF
导出
摘要 This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based on the invariance of differential equations under infinitesimal transformations with respect to the generalized coordinates and generalized momentums. The structure equation and the non-Noether conserved quantities of the systems are obtained. The inverse issues associated with the momentum-dependent symmetries are discussed. Finally, an example is discussed to further illustrate the applications. This paper investigates the momentum-dependent symmetries for nonholonomic nonconservative Hamilton canonical systems. The definition and determining equations of the momentum-dependent symmetries are presented, based on the invariance of differential equations under infinitesimal transformations with respect to the generalized coordinates and generalized momentums. The structure equation and the non-Noether conserved quantities of the systems are obtained. The inverse issues associated with the momentum-dependent symmetries are discussed. Finally, an example is discussed to further illustrate the applications.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期8-12,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 10372053) and the Natural Science Foundation of Henan Province, China (Grant Nos 0311011400 and 0511022200) and the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences.
关键词 nonholonomic nonconservative Hamiltonian system momentum-dependent symmetry infinitesimal transformation Lie group nonholonomic nonconservative Hamiltonian system, momentum-dependent symmetry,infinitesimal transformation, Lie group
  • 相关文献

参考文献32

  • 1Noether A E 1918 Nachr, Akad. Wiss. G6ttingen Math.Phys. KI II 235.
  • 2Djukic Dj S and Vujanovic B 1975 Acta Mech, 23 17.
  • 3Vuianovic B 1978 Int. J, Non-Linear Mech. 13 185.
  • 4Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chiaese).
  • 5Mircea Crasmareanu 2000 J. Non-Linear Mech. 35 947.
  • 6Mei F X 1993 Sci, Chin, 23 709.
  • 7Sarlet W, Cantrijn F and Crampint M 1987 J, Phys. A Math. Gen. 20 1365.
  • 8Wafo Sob. C and Mahomed F M 1999 Quantum Gray. 163553.
  • 9Sléphaae F 2001 Quantum Gray. 18 4863.
  • 10Lutzky M 1979 J. Phys. A Math, Gen. 12 973.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部