期刊文献+

盲卷积信号的一种高效分离算法 被引量:2

An Efficient Algorithm of Blind Source Separation for Convolved Signals
下载PDF
导出
摘要 针对盲卷积信号提出一种高效分离算法,采用分段的思想,对每短时段信号通过检验分离效果而灵活选择是否需要重新训练分离矩阵参数,既考虑了混合模型的时变性,又大大提高了盲分离的效率。研究还提出并应用了限值检验控制准则,来有效进行迭代算法的控制和分离效果检验的判决,保证了算法的执行效率。仿真实验分析通过比较不分段盲分离算法和分段逐段盲分离算法,表明了该算法的高效性。 An efficient algorithm of blind source separation for convolved signals with the blocking idea was proposed, which could decide whether a new separation matrix was trained or not after detecting the separation results for every short signal. It not only thinks about the time-varying of the mixture model but also greatly improves the efficiency of BSS. The detection and control criteria based on the threshold was also proposed and effectively applied to the control of the iterative algorithm and the judgment of the separation effect. The simulation experiment shows that this algorithm is more efficient than the other algorithms.
出处 《系统仿真学报》 CAS CSCD 北大核心 2006年第1期260-263,266,共5页 Journal of System Simulation
关键词 盲分离 卷积模型 分段 限值检验控制准则 消噪 blind source separation convolution mixtures blocking detection and control criteria based on the threshold noise reduction
  • 相关文献

参考文献11

  • 1Juteen C,Herault J.Blind separation of sources,part 1:An adaptive algorithm based on neuromimetic structure [J].Signal processing,1991,24:1-10.
  • 2Nabil Charkani,Yannick Deville.Self-adaptive separation of convolutively mixed signals with a recursive structure.Part I:Stability analysis and optimization of asymptotic behaviour [J].Signal Processing,1999,73:225-254.
  • 3Hoang-Lan Nguyen Thi,Christian Jutten.Blind source separation for convolution mixtures [J].Signal Processing,1995,45:209-229.
  • 4G Gelle,M Colas,C Servière.Blind Source Separation:A New Pre-Processing Tool for Rotating Machines Monitoring?[J].IEEE Transactions on Instrumentation and Measurement,2003,52(3):790-795.
  • 5G Gelle,M Colas,G Delaunay.Blind soures separation applied to rotating machines monitoring by acoustical and vibrations analysis [J].Mechanical Systems and Signal Processing,2000,14(3):427-442.
  • 6Bell A J,Sejnowski T J.An information-maximization approach to blind separat ion and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7Fabian J,Bauer C H.Comparison of maximum entropy and minimal mutual information in a nonlinear setting [J].Signal Processing,2002,(82):971-980.
  • 8Robert A,Herbert B,Shoko A,Shoji M.On-line Time-domain Blind Source Separation of Nonstationary Convolved Signals[C]// Proceeding of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003).Japan,2003,4:987-992.
  • 9孔薇,杨杰,周越.一种改进的最大熵方法在船舶辐射噪声盲分离中的应用[J].上海交通大学学报,2004,38(12):1962-1965. 被引量:1
  • 10吴小培,冯焕清,周荷琴,王涛.基于独立分量分析的混合声音信号分离[J].中国科学技术大学学报,2001,31(1):68-73. 被引量:23

二级参考文献11

  • 1吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 2杨福生.独立分量分析及其在生物医学工程中的应用.99’中国生物医学电子学学术年会论文集[M].,1999.34-37.
  • 3吴小培,北京生物医学工程,2000年,19卷,3期,201页
  • 4杨福生,99’中国生物医学电子学学术年会论文集,1999年,34页
  • 5Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information[J]. Neural Computation, 1997,7:1457-1482.
  • 6Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7:1129-1159.
  • 7Fabian J, Bauer C H. Comparison of maximum entropy and minimal mutual information in a nonlinear setting[J]. Signal Processing, 2002, (82): 971-980.
  • 8Petteri P. Blind source separation using algorithmic information theory[J]. Neurocomputing,1998, (22): 35-48.
  • 9Comon P. Independent component analysis, a new concept?[J] Signal Processing, 1994, 36:287-314.
  • 10Zhao Yunxin, Zhuang Xinhua. Gaussian mixture density modeling of non-Gaussian source for autoregressive process[J]. IEEE Transactions on Signal Processing, 1995, 43(4):894-903.

共引文献22

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部