摘要
针对Tamura纹理模型,提出了基于语言变量的图像纹理语义特征描述方法;并通过遗传程序设计构造从低层视觉特征到高层语义特征的映射;最后根据这些模糊语义值进行图像检索.实验结果表明系统不仅能得到出众的检索效率,而且与人类的视知觉具有比较好的一致性,提出的方法对于缩小低层视觉特征和高层语义特征之间的“语义鸿沟”具有很大的意义.
According to Tamura's texture model, this paper puts forward an image texture semantic description framework based on linguistic variable. Authors successfully construct the mapping from low-level visual feature to high-level semantic feature through genetic programming algorithm, and propose the fuzzy retrieval algorithm according to the extracted semantic features. The experiment results show that above approach not only has an excellent retrieval precision but also has a good accordance with the human visual perception. The approach has strong significance for reducing the "semantic gap" between the visual feature and semantic visual.
出处
《计算机学报》
EI
CSCD
北大核心
2006年第1期116-123,共8页
Chinese Journal of Computers
关键词
语义检索
基于内容的图像检索
语言变量
遗传程序设计
模糊规则
semantic retrieval
content based image retrieval
linguistic variable
genetic programming
fuzzy rule