期刊文献+

基于隐私保护的分类挖掘 被引量:20

Privacy Preserving Classification Mining
下载PDF
导出
摘要 基于隐私保护的分类挖掘是近年来数据挖掘领域的热点之一,如何对原始真实数据进行变换,然后在变换后的数据集上构造判定树是研究的重点·基于转移概率矩阵提出了一个新颖的基于隐私保护的分类挖掘算法,可以适用于非字符型数据(布尔类型、分类类型和数字类型)和非均匀分布的原始数据,可以变换标签属性·实验表明该算法在变换后的数据集上构造的分类树具有较高的精度· Privacy preserving classification mining is one of the fast-growing sub-areas of data mining. How to perturb original data and then build a decision tree based on perturbed data is the key research challenge. By applying transition probability matrix a novel privacy preserving classification mining algorithm is proposed, which suits non-char type data (Boolean, categorical, and numeric type) and non-uniform probability distribution of original data, and can perturb label attribute. Experimental results demonstrate that the decision tree built using this algorithm on perturbed data has a classifying accuracy comparable to that of the decision tree built using un-privacy-preserving algorithm on original data.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第1期39-45,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(69933010 60303008) 国家"八六三"高技术研究发展计划基金项目(2002AA4Z3430)
关键词 数据挖掘 分类 判定树 隐私保护 转移概率矩阵 data mining classification decision tree privacy preserving transition probability matrix
  • 相关文献

参考文献11

  • 1Rakesh Agrawal.Data mining:Crossing the chasm.The 5th Int'l Conf.Knowledge Discovery in Databases and Data Mining,San Diego,California,1999.
  • 2Rakesh Agrawal,Ramakrishnan Srikant.Privacy-preserving data mining.The ACM SIGMOD Conf.Management of Data,Dallas,Texas,2000.
  • 3Yehuda Lindell,Benny Pinkas.Privacy preserving data mining.In:Advances in Cryptology-Crypto.Berlin:Springer-Verlag,2000.36~ 54.
  • 4Dakshi Agrawal,Charu C.Aggarwal.On the design and quantification of privacy preserving data mining algorithms.The 20th Symposium on Principles of Database Systems,Santa Barbara,California,2001.
  • 5Wenliang Du,Zhijun Zhan.Using randomized response techniques for privacy-preserving data mining.The 9th ACM SIGKDD Int'l Conf.Knowledge Discovery in Databases and Data Mining,Washington,D.C.,2003.
  • 6L.F.Cranor,J.Reagle,M.S.Ackerman.Beyond concern:Understanding net users' attitudes about online privacy.AT&T Labs-Research,Tech.Rep.,1999.http://www.research.att.com/library/trs/TRs/99/99.4.3/report.htm.
  • 7J.R.Quinlan.C4.5:Programs for Machine Learning.San Mateo,CA:Morgan Kaufmann,1993.
  • 8Rakesh Agrawal,Sakti Ghost,Tomasz Imielinski,et al.An interval classifier for database mining applications.In:Proc.VLDB Conf.,Vancouver,British Columbia,Canada,1992.
  • 9L.Breiman,J.H.Friedman,R.A.Olshen,et al.Classification and Regression Trees.Boca Raton,Florida:CRC Press,1984.
  • 10J.Han,M.Kamber.Translated by Fan Ming and Meng Xiaofeng,et al.Data Mining:Concepts and Techniques.Beijing:Mechanical Industrial Press,2001 (in Chinese).

同被引文献335

引证文献20

二级引证文献328

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部