期刊文献+

基于双水平集的图像分割模型 被引量:11

An Image Segmentation Model Based on Dual Level Sets
下载PDF
导出
摘要 针对水平集模型对于具有细长拓扑部分的目标和弱边界目标进行分割时存在的问题,提出了双水平集方法·在新的方法中通过两条水平集之间的相互吸引来加速解的收敛,同时提出了一种快速有符号距离函数生成方法,提高了计算效率·传统的水平集通常利用图像边界信息来构造速度函数进行求解,但在待分割目标具有很强噪音或具有弱边界时往往得不到真实解,对此,提出了一种新的基于区域信息的速度构造方法·将双水平集模型应用到合成图像与左心室MR图像的分割实验,结果表明该方法具有较好的分割效果和较高的分割效率· It is hard for level set method to segment an image with slight topological structure. By analysing the phenomenon, a new method based on dual level sets has been introduced. With this new method, objects can be segmented quickly. Meanwhile, typical level set method can not get the true segmentation when it segments an image with strong noise or week boundary, for it only uses edge information to construct the speed function. So the region information is employed to construct the speed function. Better results are achieved in the application of this method on segmentation of synthetic or cardiac magnetic resonance images.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第1期120-125,共6页 Journal of Computer Research and Development
基金 香港特别行政区政府研究资助局基金项目(CUHK/4180/01E CUHK/1/00C)
关键词 水平集 窄带 双水平集 速度函数 图像分割 level set narrow band dual level sets speed function image segmentation
  • 相关文献

参考文献3

二级参考文献28

  • 1[1]Osher S, Sethian J. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79(1):12~49.
  • 2[2]Chopp DL. Computing minimal surfaces via level set curvature flow. Journal of Computational Physics, 1993,106(1):77~91.
  • 3[3]Chopp DL. Numerical computation of self-similar solutions for mean curvature flow. Journal of Experimental Mathematics, 1994, 3(1):1~15.
  • 4[4]Sethian JA, Strain J. Crystal growth and dendritic solidification. Journal of Computational Physics, 1992,98(2):231~253.
  • 5[5]Gomes J, Faugeras O. Level sets and distance functions. In: Vernon D, ed. Proceedings of the 6th European Conference on Computer Vision. LNCS 1842, Dublin: Springer-Verlag, 2000. 588~602.
  • 6[6]Sethian JA. Level Set Methods and Fast Matching Methods. Cambridge: Cambridge University Press, 1999.
  • 7[1]M Kass, A Witkin, D Terzopoulous. Snake: Active contour models. In: Brady I M, Rosenfield A eds. Proc of the 1st Int'l Conf on Computer Vision. London: IEEE Computer Society Press, 1987. 259~263
  • 8[3]D Mumford, J Shah. Boundary detection by minimizing functions. The Conf on Computer Vision and Pattern Recognition, San Francisco, 1985
  • 9[4]De Giorgi, D Carriero, A Leac. Existence theorem for a minimum problem with free discontinuity set. Archive for Rational Mechanics and Analysis, 1989, 108(3): 195~218
  • 10[5]D Mumford, J Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 1989, 42(5): 577~685

共引文献46

同被引文献155

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部