期刊文献+

搜索引擎中语义相关反馈技术的研究 被引量:2

Research of Relevance Feedback Based on Semantic in Search Engine
下载PDF
导出
摘要 搜索引擎是互联网普及的标志,但是目前在搜索引擎的召回率和准确率上是不能让用户满意的。文中从基于向量空间的反馈技术的分析入手,利用概念图的知识,提出了基于语义的相关反馈技术。实验结果表明,该技术在提高查全率和查准率上是有效的。 Search engine is the sign of World Wide Web prevalence. But now the precision and the recall is not satisfied for the users. Firstly the paper analyzes the defect of technique of the VSM model. And then put forward one technique based- on semantic for relevance feedback, using the knowledge of conceptual graphs. Experimental results show that the technique can help user accomplish the task effectively.
作者 殷亚玲 张蕾
出处 《计算机技术与发展》 2006年第2期167-170,共4页 Computer Technology and Development
基金 陕西省教育厅专项科研基金(HD01302)
关键词 搜索引擎 相关反馈 向量空间 概念图 search engine relevance feedback VSM conceptual graphs
  • 相关文献

参考文献9

  • 1Sowa J F. Conceptual Structures: Information Processing in Mind and Machine[M]. Reading, MA: Addison-Wesley,1984.
  • 2Sowa J F. Knowledge Representation: Logical, Philosophical,and Computational Foundations [M]. Pacific Grove, CA:Brooks Cole Publishing Co,2000.
  • 3Petersen U. Conoeptual Structure[EB/OL]. http://www.huminf.aau. dk/cg, 2002.
  • 4陶跃华,孙茂松.搜索引擎中相关性反馈技术[J].情报理论与实践,2001,24(4):295-297. 被引量:13
  • 5张蕾,侯奠社.实现概念图工具的若干问题研究[J].西安公路交通大学学报,1998,18(2):107-110. 被引量:3
  • 6Knappe R,Bulskov H,Andreasen T. Similarity Graphs[A]. in Zhong N, Ras Z W, Tsumoto S, Suzuki E. 14th International Symposium on thodologies for Intelligent Systems, ISMIS 2003[C]. Maebashi, Japan: [s. n.],2003.
  • 7郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 8Na Seung-Hoon, Kang In-Su, Lee Sang-Ycol. Question Answering Using a WordNet-based Answer Type Taxonomy[A]. Proceeding of the 11th Text Retrieval Conference[C].Gaithersburg, USA: [s. n.],2003.
  • 9刘群..计算所汉语词法分析系统[EB/OL]..http://www.ict.ac.cn/freeware,,2003..

二级参考文献27

  • 1周继鹏,张蕾.概念图知识表示的推理方法[J].西北大学学报(自然科学版),1993,23(6):506-511. 被引量:1
  • 2张蕾.用概念图表示规则及其推理方法[J].西北大学学报(自然科学版),1994,24(4):319-322. 被引量:3
  • 3张蕾.一个概念图编辑工具的设计与实现[J].西北大学学报(自然科学版),1996,26(6):483-487. 被引量:2
  • 4[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 5[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 6[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 8[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 9[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献178

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部