期刊文献+

数据挖掘:建模、算法、应用和系统 被引量:40

Data Mining:Modeling,Algorithms,Applications and Systems
下载PDF
导出
摘要 数据挖掘是20世纪末逐渐形成的一个多学科交叉领域,目前已经广泛成功地应用在金融、零售、医药、通讯、电子工程、航空、旅馆等有大量数据和深度分析需求的领域。文中对数据挖掘的建模、算法、应用和软件工具进行了综述,给出了数据挖掘的定义、范畴和特点,以及数据挖掘的数据集的各种实际情况;总结了数据挖掘在实际应用时的基本步骤和过程;对数据挖掘在各种应用问题上的任务和建模进行了讨论;列举了目前数据挖掘领域中主要流行的算法,并对算法设计需要考虑的问题进行了简要的分析;综述了目前数据挖掘算法在一些领域的应用;较全面地叙述了目前数据挖掘软件工具性能及其开发商情况;最后,对数据挖掘的发展前景和方向进行了展望。 Data mining is an interdisciplinary area formulated in the end of the 20th century. Up to now, it has been widely and successfully used in the applications of banks, stock markets, retails, medicine, telecommunication, electronic engineering, aviation industry and travel industry, where huge amounts of data are available and await indepth analysis. Provides a survey for data mining from the points of modeling, algorithms, applications and software systems. First, it outlines the concept and characteristics Of data mining, and discusses the data sets. Second, the stePs and procedure are summarized. Third, the tasks and models are explored in the scenarios of applications. Fourth, the popularly used data mining algorithms are briefly analyzed with the practical considerations. Fifth, the applications of data mining are illustrated. Sixth, the data mining software tools, their features and vendors are listed and commented. Finally, the prospect and the issues to be solved by data mining are addressed.
作者 梁循
出处 《计算机技术与发展》 2006年第1期1-4,65,共5页 Computer Technology and Development
基金 留学回国启动基金(4131522)
关键词 数据挖掘 算法 应用 软件系统 data mining algofithms applications software systems
  • 相关文献

参考文献7

  • 1Dunharn H. Data Mining Introductory and Advanced Topics[M]. New Jersey: Prentice Hall, 2003.
  • 2Groth R. Data Mining - Building Competitive Advances[M].New Jersey: Prentice Hall, 2000.
  • 3Han J, Kamber M. Data Mining - Concepts and Techniques[M]. New York: Morgan Kaufmann, 2001.
  • 4李雄飞 李军.数据挖掘与知识发现[M].北京:高等教育出版社,2005..
  • 5万国华,陈宇晓.数据挖掘算法及其在股市技术分析中的应用[J].计算机应用,2004,24(11):104-106. 被引量:1
  • 6梁循.通过Web统计信息挖掘研究股市反应[J].微机发展,2005,15(8):81-84. 被引量:3
  • 7BersonA SmithS ThearlingK.郑岩 魏黎译.构建面向CRM的数据挖掘应用[M].北京:人民邮电出版社,2003..

二级参考文献14

  • 1[1]BERNDT DJ,CLIFFORD J.Finding Patterns in Time Series:A Dynamic Programming Approach[ A].Advances in Knowledge Discovery and Data Mining[ C].Menlo Park,CA:AAAI Press,1996.229-248.
  • 2[2]KINGDON J.Intelligent Systems and Financial Forecasting[ M].Berlin:Springer,1997.
  • 3[3]MURPHY JJ.Technical Analysis of the Financial Markets:A Comprehensive Guide to Trading Methods and Applications[ M].New Jersey:Prentice-Hall,1999.
  • 4[4]PRING MJ.Technical Analysis Explained:The Successful Investor's Guide to Spotting Investment Trends and Turning Points[ M].Boston:McGraw-Hill,2002.
  • 5[5]SAKOE H,CHIBA S.Dynamic Programming Algorithm Optimization for Spoken Word Recognition[ A].Waibel A,Lee K Readings in Speech Recognition[ C].San Mateo,CA:Morgan Kaufman,1990.115-153.
  • 6Engle R F. Autoregreesive conditional duration: a new model for irregularly - spaced transaction data [J]. Econometrica,1998,66:1127-1162.
  • 7Titman S. Security analysis and trading when some investors receive information before others[J]. Journal of Finance, 1994,49:1665 - 1698.
  • 8Brennan M J.Stock prices and the supply of information[J].Journal of Finance, 1991,46:1665 - 1691.
  • 9Bernard V L. Stock price reaction to earnings announcements[A]. Thaler R H. Advances in Behavioral Finance[C]. New York:Russell Sage Foundation,1993.
  • 10Grundy F, Bruce D. Trade and the revelation of information through prices[J]. Review of Financial Studies, 1989,2: 495 -526.

共引文献5

同被引文献235

引证文献40

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部