期刊文献+

基于数据挖掘和协议分析的可扩充IDS架构 被引量:1

An Extensible Framework of Intrusion Detection System Based on Data Mining and Protocol Analysis
下载PDF
导出
摘要 由于TCP/IP协议的开放性,目前的网络极易受到攻击。文中详细介绍了入侵检测系统的主要思想和技术分类,通过比较不同类型入侵检测系统的优缺点,分析了应用于入侵监测系统的数据挖掘和协议分析技术,并在此基础上提出了一种新的基于安全管理的混合式可扩充入侵检测架构。该构架分层、简单、灵活,具有良好的扩充性。理论分析表明,该架构不仅能提高入侵检测的准确率,而且能提升系统效率,有很好的应用前景。 Because of the open structure of TCP/IP, the current network is vulnerable. Introduces the main thinking and technical classification. It presents a new mixed model for the intrusion detection system based on data mining and protocol analysis by analyzing the relative merits of the two kinds of IDS. The extensible intrusion detection framework is layering, simple, flexible and theoretical analysis indicates that it can improve not only the rate of accuracy but also the efficiency of the IDS , so it has a better application.
出处 《计算机技术与发展》 2006年第1期223-225,共3页 Computer Technology and Development
基金 国家自然科学基金资助项目(60373063)
关键词 入侵检测 数据挖掘 协议分析 intrusion detection ldata mining protocol analysis
  • 相关文献

参考文献8

  • 1Anderson J P. Computer Security Threat Monitoring and Surveillance[ R], Technical report, Jamed P Anderson Co.1980.
  • 2Denning D E. An Intrusion Detection Model[J]. IEEE Transaction on Software Engineering, 1987,13(2) :222 - 232.
  • 3COMER D, SETHI R. The complexity of tile index construction[ J ]. ACM, 1977,24 (3) : 428 - 440.
  • 4Ye Nong, Vilbert S, Chert Qiang. Computer Intrusion Detection Through EWMA for Autocorrelated and Uncorrelated Data[J]. IEEE Transactions on Reliability,2003,52( 1 ):28- 32.
  • 5李庆华,童健华,孟中楼,张薇.基于数据挖掘的入侵特征建模[J].计算机工程,2004,30(8):51-53. 被引量:5
  • 6Agrawal R, Imielinaki T, Swami A. Mining association rules between sets of items in large database[A]. In: Proc 1993 ACM SIGMOD International ConI on Management of Data[C]. Washington, DC: [s. n. ], 1993. 207 - 216.
  • 7宋世杰,胡华平,胡笑蕾.关联规则和序列模式算法在入侵检测系统中的应用[J].成都信息工程学院学报,2004,19(1):1-6. 被引量:8
  • 8杜建国,郭巧.协议分析和命令解析在入侵检测中的应用[J].计算机工程与应用,2004,40(18):159-162. 被引量:13

二级参考文献16

  • 1李为民,俞巧云,王骞,李杜,邓伟平.基于特征点的光纤位置检测方法[J].光电工程,2002,29(S1):35-37. 被引量:2
  • 2Protocol Analysis and Command Parsing vs.Pattern Matching in In-trusion Detection System.http://www.networkice.com
  • 3Jiawei Han,Jian Pei.Simon Fraser Sequential Pattern Mining:From Shopping History Analysis to Weblog and DNA Mining.University,Canada:
  • 4Wenke.Lee.A Aata Mining for Constructing Feature and Model for Intrusion Detection System[D].COLUMBIA UNIVERSITY,1999.
  • 5Wenke.Lee.,S.J.Stolfo,K.W.Mok.Algorithms For Mining System Audit Data[R].In Proceedings of the 1999 IEEE Symposium on Security and Privacy,1999.
  • 6R.Agrawal,T.Imielinaki,A.Swami.Mining assosiation rules between sets of items in large database[C].Washington,D.C:In Proc.of the ACM SIGMOD Conference on Management of Data,1993:207-216.
  • 7R.Agrawal,R.Srikant,Mining Sequential Patterns[R].Proceedings of the 11th International Conference on Data Engineering,1995.
  • 8R.Agrawal and R.Srikant.Mining Sequential Patterns:Generalizations and Performance Improvements[R].Proceeding of the Fifth Int'l Conference on Extending Database Technology (EDBT),1996:3-17.
  • 9R.Agrawal,A.Arning,T.Bollinger,M.Mehta,J.Shafer,R.Srikant:The Quest Data Mining System[R].Portland:Proc.of the 2nd Int'l Conference on Knowledge Discovery in Databases and Data Mining,Portland,1996.
  • 10R.Agrawal and R.Srikant.Mining Generalized Assosiation Rules[R].Zurich:In Proceeding of the 21st Int'l Conference on Very Large Database,1995.

共引文献23

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部