摘要
在一个v阶不完全的幂等Schro¨der拟群中去掉vi个阶为hi的子拟群(1≤i≤k),如果这些子拟群是不相交的且是生成的(即:∑1≤i≤kvihi=v),则称这个v阶拟群为框架幂等Schro¨der拟群,并记为FISQ(hv11h2v2…hvkk).业已证明,FISQ(1n)存在当且仅当n≡0,1(mod 4)且n≠5,9.本文报道了除n=8作为可能的例外,FISQ(2n)存在的充分必要条件是n≥5且n≠6.
An incomplete idempotent Schroder quasigroup (IISQ) of order v with vi missing sub-IISQ (holes) of order hi (1 ≤ i≤k), which are disjoint and spanning( i. e. ,∑1 ≤ i≤k vihi = v), is called a frame idempotent Schroder quasigroup and denoted by FISQ ( h1^1h2^2…hk^k ). it is known that an FISQ ( 1^n ) exists ff and only if n ~ 0,1 ( mod 4 ) and n ~ 5, 9. It is proved that an FISQ(2^n)exists if and only if n≥5 and n ≠ 6 ,with one posaible exception that n = 8.
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2006年第1期1-5,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
NSFC(10371002)