摘要
主要研究了一类含临界位势双调和问题。利用Hardy不等式得到一个仅与维数N有关的上限λ*,且当λ<λ*时,不管维数是一般的还是临界的,该问题都至少有一个正解。
In this paper, we mainly studied a sort of semilinear weighted critical polyharmonic equations, in the critical weighted situation, by using Hardy inequality we can get an upper limit λ^* which is only related to the dimension N, and when λ〈λ^*, the problem has at least one positive solution regardless of whether the dimension is critical or not.
出处
《东莞理工学院学报》
2006年第1期1-4,共4页
Journal of Dongguan University of Technology
基金
Supported by the National Science Foundation of China(10371116)
关键词
双调和方程
临界位势
特征值
biharmonic equations
critically weighted
eigenvalue