期刊文献+

含临界位势的半线性双调和方程的正解(英文)

The Positive Solution of Semilinear Biharmonic Equation with Critical Weight
下载PDF
导出
摘要 主要研究了一类含临界位势双调和问题。利用Hardy不等式得到一个仅与维数N有关的上限λ*,且当λ<λ*时,不管维数是一般的还是临界的,该问题都至少有一个正解。 In this paper, we mainly studied a sort of semilinear weighted critical polyharmonic equations, in the critical weighted situation, by using Hardy inequality we can get an upper limit λ^* which is only related to the dimension N, and when λ〈λ^*, the problem has at least one positive solution regardless of whether the dimension is critical or not.
作者 熊辉 冯芙叶
出处 《东莞理工学院学报》 2006年第1期1-4,共4页 Journal of Dongguan University of Technology
基金 Supported by the National Science Foundation of China(10371116)
关键词 双调和方程 临界位势 特征值 biharmonic equations critically weighted eigenvalue
  • 相关文献

参考文献9

  • 1Brezis H,Nirenberg L.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J].Commun.Pure Appl.Math.,1983,36:437-477.
  • 2Lions P L.The concentration-compactness principle in the calculus of varations,The locally compact case.part I and part Ⅱ[J].Rev.Mat.Iberoamericana,1985,1:145-201,223-283.
  • 3Lions P L.The concentration-compactness principle in the calculus of varations,The limit case.part I and part Ⅱ[J].Ann.Inst.H.Poincar'e Anal.Non Lin'eaire,1984,1:109-145,45-121.
  • 4Pucci P,Serrin J.Critical exponents and critical dimensions for polyharmonic equations[J].Math.Pure Appl.,1990,69:55-83.
  • 5Edmunds D E,Fortunato D,Jannelli E.Critical exponents,critical dimensions and the biharmonic operator[J].Arch.Rational Mech.Anal.,1990,112:269-289.
  • 6Francisco Bernis,Hans-Christoph Grunau.Critical exponents and multiple critical dimensions for polyharmonic operators[J].Di_er.Equations,1995,117:469-486.
  • 7Noussair E S,Swanson Ch A,Yang Jianfu.Critical semilinear biharmonic equations in RN[J].Proc.Royal Soc.Edinburgh,1992,12lA:139-148.
  • 8Alves C O,Joao Marcos do O,Miyagaki 0 H.Nontrival solutions for a class of semilinear biharmonic problems involving critical exponents[J].Nonlinear Analysis,2001,46:121-133.
  • 9James W.Dold,Victor A.Galaktionov,Andrew A.Lacey,et al.Rate of approach to a singular steady state in quasilinearreaction-di_usion equations[J].Ann.Scuola Noem.Sup.CI.Sci.,1998,XXVI(4):653-687.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部