期刊文献+

一类非线性时滞差分方程的有界持久性

Boundedness and Persistence of the Delay Difference
下载PDF
导出
摘要 考虑一类非线性时滞差分方程: 这里p0,p1,…,pk,Ak均为正常数,A0,A1,…,Ak-1均为非负常数,初始值x-k,x-k+1,…,x0为任意给定的正数。利用分析的技巧,得到了方程的正解有界持久的某些充分条件,部分回答了G.Ladas提出的一个公开问题;改进了已有文献中的相关工作。 In this paper, we consider the following equation xn+1=∑i=0 ^k Ai/xn-i^pi,n=0,1,2,3… Where p0 , p1 , ..., pk , At are positive numbers, A0, A1, ..., Ak-1 are not negative numbers,and the initial values x-k, x-k+1, x0 are arbitrary positive numbers.A sufficient condition for boundedness and persistence of positive solutions is obtained. A conjecture by G.Ladas is partially proved here, and the results of some known paperI improved.
出处 《东莞理工学院学报》 2006年第1期5-8,共4页 Journal of Dongguan University of Technology
关键词 差分方程 时滞 有界持久性 difference equation delay boundedness and persistence
  • 相关文献

参考文献5

二级参考文献20

  • 1Brand L. , A Sequence Defined by aDifference Equation[J]. Amer. Math. Monthly, 1995, 62:489~492.
  • 2Devault R. , Kocie V.L. and Ladas G., Global Stability of a Reeursive Sequence[J].Dynamics Sys-tems and Applications, 1992, 1:13~ 21.
  • 3DeVault R. , Ladas G. and Schulz S.W. , On the Recursive Sequence xn+1=A/Xpm+B/xXqn-1,Proceed-ings of the Second International Conference on Difference Equations[M]. Basel:Gordon and BreachScience Publishers, 1996.
  • 4Ladas G. Open Problems and Conjectures[J]. Journal of Difference Equations andApplications, (Re-ceived June 3,1996).
  • 5Ladas G. , Open Problems and Conjectures, Proceedings of the First InternationalConference on Dif-ference Equations[M]. Basel: Gordon and Breach Science Publishers, 1995.337~349.
  • 6Philos CH. G. , Purnaras I. K. and Sficas Y. G. , Global Attractivity in aNonlinear Difference Equation[J]. Appl. Math. Comput. , 1994, 62:249~258.
  • 7Arciero M. , Ladas Gi and Sehultz S. W. , Some Open Problems about the Solutions ofthe Delay Dif-ference Equation Xn++1A/x2n+1/Xpn-k[J]. Proceedings of the Georgian Academyof Sciences, Mathe-matics, 1993,3: 257~262.
  • 8Ladas G., Open Problems and Conjectures[J]. Journal of Difference Equations andApplications,1995,1:413~419.
  • 9LI Xianyi et al, A Conjecture by G1 Ladas Applied Mathematics AJournal of ChineseUniversity(se-ries B) ,1998,13(1): 39~44.
  • 10De Vault R, Ladas G, Schultz S W. On the recursive sequence xn+1=(A/xpn)+B/(xqn-1)[A].In: Proceedings of the Second International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers,1996.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部