期刊文献+

超有限Ⅱ_1型因子中Cartan双模代数上等距和2-局部等距

Isometries and 2-Local Isometries on Cartan Bimodule Algebras in Hyperfinite Factors of Type Ⅱ_1
原文传递
导出
摘要 设M是超有限Ⅱ1型因子.D是M的Cartan子代数,T是对角为D的M 的σ-弱闭的子代数(简称Cartan双模代数)并且生成M.设φ是T到T上的σ-弱连续满线性等距,则Φ可扩张成从M到M上的等距.设φ是T到T上的映射(没假设线性),满足任给a,b∈T,T上存在σ-弱连续满线性等距φa,b(与n,b有关),使得φa,b(a)=φ(a),φa,b(b)=φ(b),则φ是线性等距. Let M be a hyperfinite factor of type Ⅱ1, D is a Cartan masa of M, T be a Cartan subalgebas of M with diagonal D which generates M. If Ф : T → T be an σ-weakly continuous (Banach) isometry, then Ф can be extended a isometry on M.If a map Ф : T → T satisfies that for every pair a, b ∈ T, there is a a-weakly continuous isometry Фa,b on T such that Фa,b(a) =Фa,Фa,b(b)=Ф(b) then Ф is a linear isometry.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第1期51-58,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10371061)数学天元基金资助项目(A0324614)
关键词 超有限Ⅱ1型因子 σ-弱连续满线性等距 2-局部σ-弱连续满线性等距 hyperfinite factor of type Ⅱ1 σ-weakly continuous isometry 2-local σ-weakly continuous isometry
  • 相关文献

参考文献12

  • 1Semrl P., Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc., 1997, 125:2677-2680.
  • 2Gyory M., 2-local isometries of Co(X), Acta Sci. Math. (Szeged), 2001, 67: 735-746.
  • 3Monlar L. 2-local isometries of some operator algebras, Proc. Edinburgh Math. Soc., 2002, 45: 349-352.
  • 4Mercer R.,Isometicisomorphisms of Cartan bimodules, J. Funct. Anal., 1991, 101:10-24.
  • 5Connes A., Classification of injective factors: cases Ⅱ1, Ⅱ∞,Ⅲλ, λ≠1, Ann. Math., 1976, 104:73-115.
  • 6Takesaki M., Theory of operator algebras (Ⅲ), Encyclopaedia Mathematical Sciences, Vol 127, Springer-Verlag, 2003.
  • 7Kadison R. V., Isometries of operator algebras, Ann. Math., 1951, 54(2): 325-338.
  • 8Muhly P. S., Qiu C. and Solel B., On isometries of operator algebras,J. Funct. Anal., 1994, 119: 138-170.
  • 9Feldman J. and Moore C. C., Ergodic equivalence relations, cohomology and von Neumann algebras Ⅰ, Ⅱ,Tran. Amer. Math. Soc., 1977, 234:289-359.
  • 10Muhly P. S., Saito K. and Solel B., Coordinates for triangular operator algebras, Ann. Math., 1988, 127:245-278.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部