期刊文献+

极大子因子

On Maximal Subfactors
原文传递
导出
摘要 若N是一个Ⅱ1型因子,G是一个有限群且在N上有一个真外作用α,则当G的阶是素数对,N是Ⅱ1型因子M=N(?)αG的极大子因子.另一方面,假设 N(?) M是Ⅱ1型因子的一个包含,M(?)M1是N(?)M的基本构造,[M:N]= p∈N是素数,N’∩ M=CI,N’∩M1是交换的,N,(?)M深度为2,则N是M的极大子因子. If N is a factor of type Ⅱ1 and G is a finite group with a properly outer action a on N, then N is a maximal subfactor in N ×α G when G is of prime order. Conversely, suppose that N 真包含M is an inclusion of factors of type Ⅱ1 and M 真包含M1 is the basic construction for N真包含M. If [M : N] = p is a prime number, N’∩ M= CI, N’∩M1 is abclian and N 真包含M is of depth 2, then N is a maximal subfactor of M.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第1期81-86,共6页 Acta Mathematica Sinica:Chinese Series
关键词 交叉积 基本构造 Ⅱ1型因子 指标 极大子因子 crossed product basic construction type Ⅱ1 actor index maximal subfactor
  • 相关文献

参考文献9

  • 1Goodman F., de la Harpe P., Jones V. F. R., Coxeter graphs and towers of algebras, MSRI Publications,Springer-Verlag, 1989.
  • 2Jones V. F. R.,Index for subfactors, Invent. Math., 1983,72: 1-25.
  • 3Kosaki H., Characterization of crossed product (properly infinite case), Pacific J. Math., 1989, 137: 159-167.
  • 4Ocneanu A., Galois theory for operator algebras, Santa Barbara: a Talk Given at Univ. California, 1986.
  • 5Kadison R. and Ringrose J., Fundamentals of the theory of operator algebras, Vol. Ⅰ and Ⅱ, Orlando: Academic Press, 1983 and 1986.
  • 6Stratila S,, Modular theory, England: Abacus Press, Tunbridge Wells, 1981.
  • 7Pimsner M. and Popa S.,Entropy and index for subfactors. Ann. Sci. Ec. Norm. Sup.,1986. 19: 57-106.
  • 8Nikshych D. and Vainerman L.,A characterization of depth 2 subfactor of Ⅱ1 factors,J. Func. Anal., 2000,171: 278-307.
  • 9Ge L. and Kadison R., On tensor products of von Neumann algebras, Invent. Math., 1996, 123: 453-466.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部