摘要
设素数P>2,整数C与P互素.对任意整数1≤a≤P-1,存在惟一的整数 1≤b≤P-1满足ab≡c mod P.Lehmer建议我们研究a与b的奇偶性不同的情形.本文给出了这一问题的两个推广,并获得了两个有趣的混合均值公式.
Let p 〉 2 be a prime, c be an integer with (c,p) = 1. For each integer a with 1 〈 a ≤ p- 1, there exists one and only one b with 1 ≤ b ≤ p- 1 such that ab ≡ c mod p. Professor Lehmer asked us to find the number of cases in which a and b are of opposite parity. In this paper, we give two generalizations on this problem, and obtain two interesting hybrid mean value formulae.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第1期95-104,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10271093)陕西省自然科学基金资助项目(2002A11)