期刊文献+

有限连通图上随机扩张森林和连通子图的边负相关性

Edge-Negative Association in Random Spanning Forests and Connected Subgraphs on Connected Finite Graphs
原文传递
导出
摘要 设G为有限连通图.本文研究图G的子图空间G上的三类概率测度,它们分别刻画图的随机扩张树,随机扩张森林和随机连通子图.基于G上均匀扩张树的边负相关性,我们构造G上的一族边负相关的非平凡随机扩张森林和随机连通子图.此外,我们还给出一定条件下图上均匀扩张森林的边负相关性. Let G be a connected finite graph. Wc consider three types of probability measures on G, the set of subgraphs of G, which govern a random spanning tree, a random spanning forest, and a random connected subgraph respectively. Basing on the edge-negative association in uniform spanning tree , we construct a family of random spanning forests and random connected subgraphs on G which are edge-negative associated. Finally, we prove the edge-negative association property for uniform spanning forest in a special case of G.
作者 吴宪远
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第1期169-176,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10301023)北京市教委基金资助项目
关键词 边负相关性 随机扩张森林 随机连通子图 edge-ncgative association random spanning forest random connected subgraph
  • 相关文献

参考文献7

  • 1Grimmett G. R.Winkler S. N., Negative association in uniform forests and connected graphs, Random Structures and Algorithms, 2004, 24: 444-460.
  • 2Feder T., Mihail M., Balanced matroids, Proceeding of the 24th ACM symposium on the theory of computing,1992, 26-38.
  • 3Bollobas B.,Graph theory,an introduction course,New York:Springer,Verlag,1979.
  • 4Fortuin C. M., Kasteleyn P. W., On the random-cluster model. L Introduction and relation to other models,Physica. 1972. 57: 536-564.
  • 5Grimmett G.R., The random-cluster model, Probability and Dical ete Structures (H. Kesten, ed.), Encyclopedia of Mathematical Sciences, Vol. 110, Springer, 2003, 73-123.
  • 6Haggstrom O., Random-cluster measures and uniform spanning trees, Stochastic Processes and their Applications, 1995, 59: 267-275.
  • 7Grimmett G. R., Percolation, second edition, Berlin: Springer, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部